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A B S T R A C T

Eggplant is a vegetable crop that is grown around the world and can provide significant nutritive benefits thanks
to its abundance of vitamins, phenolics and antioxidants. In addition, eggplant has potential pharmaceutical uses
that are just now becoming recognized. As compared to other crops in the Solanaceae, few studies have in-
vestigated eggplant’s metabolic profile. Metabolomics and metabolic profiling are important platforms for as-
sessing the chemical composition of plants and breeders are increasingly concerned about the nutritional and
health benefits of crops. In this review, the historical background and classification of eggplant are shortly
explained; then the beneficial phytochemicals, antioxidant activity and health effects of eggplant are discussed
in detail.

1. Introduction

The primary concern of plant breeders has traditionally been the
agronomic properties of crop plants: yield, uniformity and resistance.
With population growth, climate change, soil and irrigation manage-
ment practices all contributing toward a decline in both the quantity
and quality of arable land, crop yield and disease resistance continue to
be breeding priorities. However, increased consumer awareness of the
nutritional and medicinal qualities of fruits and vegetables has shifted
some of the breeders’ focus toward enhancing the chemical composition
of plants (Raigon, Prohens, Muñoz-Falcón, & Nuez, 2008).

In addition to accumulating minerals that are essential elements in
the human diet, plants produce a wide array of both primary and sec-
ondary metabolites that impact human health and nutrition. Primary
metabolites are compounds that are directly involved in plant physio-
logical and developmental processes. The carbohydrates, proteins, li-
pids and vitamins, made by plants as primary metabolites, are crucial to
human nutrition. Secondary metabolites are not essential for basic plant
processes. However, these phytochemicals often play important roles in
plant defence against biotic and abiotic stresses. Although there is no
common classification of secondary metabolites, generally they can be
categorized as phenolics, terpenoids, nitrogen-containing alkaloids and
sulfur-containing compounds. In addition, both traditional and modern

medicine rely on these phytochemicals as an important source of re-
medies and pharmaceuticals. Thus, understanding the metabolic con-
stitution of plants and the genetic control of secondary metabolite
synthesis is now a goal of many breeding programmes. Such knowledge
promises to facilitate strategies for improving traits, such as flavour,
and biotic and abiotic stress resistance, and should help to address the
more complex issue of modifying levels of antioxidants and amino acids
as a means of improving crop compositional quality (Maloney, 2004).
Thus, metabolomics approaches are becoming more important in plant
breeding.

Metabolomics is the “study of all the chemical compounds in an
organism that have low molecular weight” (Maloney, 2004). Liquid
chromatography (LC) and gas chromatography (GC) are often com-
bined with mass spectrometry (MS) to reveal the metabolic composition
of plants. This strategy is frequently untargetted: although it reveals
variation among individual plants, it often does not attempt to identify
individual chemical compounds. Metabolic profiling, on the other hand,
targets specific metabolites and results in qualitative and quantitative
data that can be used for various purposes. Populations can be pheno-
typed for a specific metabolite, the safety of genetically modified or-
ganisms (GMOs) can be more precisely evaluated, and plants can be
screened to uncover metabolite bioactivity and to assess metabolites as
biomarkers of plant stress, injury or disease. Using metabolites as
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biomarkers is challenging. Unlike molecular markers they are subject to
environmental variation. However, under controlled environmental
conditions, metabolome analyses offer the potential of biomarker dis-
covery and application. These types of studies can help to reveal the
quantitative genetic bases of the biochemical processes underlying
metabolite production and may inform breeding strategies. For these
reasons metabolomics and metabolic profiling are increasingly popular
platforms in plant genetics and breeding (Kliebenstein, 2009).

Eggplant (Solanum melongena L.) also known as aubergine, brinjal,
berenjena or Guinea is an agronomically and economically important
non-tuberous species of the nightshade Solanaceae family. Eggplant has
been cultivated for centuries in Asia, Africa, Europe, and the Near East
(Bohs & Weese, 2010). Today, around 50 million tons of cultivated
eggplant are produced on more than 1,800,000 ha worldwide (FAO-
STAT, 2014, Accessed 03.08.2017). Eggplant production is con-
centrated in a few countries: China (29.5 million tons) is the top pro-
ducer, followed by India (13.5 million tons), Egypt (1.2 million tons),
Iran (0.85 million tons) and Turkey (0.82 million tons). However,
eggplant fruit are also commonly sold in American, European, and
Australian markets (FAOSTAT, 2014, Accessed 03.08.2017).

Eggplant is a high-yielding crop and is well-adapted to hot and wet
environments. Therefore it typically remains affordable while other
vegetable crop prices increase. As a result, eggplant is an especially
important source of nutrients (Table 1) in the diets of low-income
consumers (Hanson et al., 2006). Interest in this plant is growing ra-
pidly because it is a good source of antioxidants (anthocyanins and
phenolic acids), which are beneficial to human health (Gajewski,
Katarzyna, & Bajer, 2009). Eggplant has also been used in traditional
medicine to treat many diseases. For example, in parts of Asia, vege-
tative aerial parts of S. americanum/nigrum were traditionally used for
treatment of skin problems and as a purgative, to ease urination, and to

increase sex drive (Meyer, Bamshad, Fuller, & Litt, 2014). In the same
study, 77 medicinal properties were recorded for eggplant which in-
dicates the importance of this plant in local medicine and its promise as
a functional food and in the natural products industry.

Although there are a few reviews describing the structures and le-
vels of phenolic compounds in eggplant, there is no collective in-
formation in the form of a literature review that summarizes the nu-
tritional and phytochemical compounds in eggplant, their anti-
oxidative potential and health benefits. This review aims to shed light
on the nutritional content and potential pharmaceutical benefits of
different eggplant species. This information can help to determine
which properties warrant further breeding efforts.

2. Background and classification of eggplant

Eggplant is an Old World species, unlike other solanaceous crops
which are native to the New World. However, like its Solanum relatives,
tomato and pepper, eggplant is an autogamous diploid with 12 chro-
mosomes (2n= 24). The fruit of the eggplant is botanically classified as
a berry, and contains numerous edible soft seeds that are bitter because
they contain nicotinoid alkaloids. Although the domestication history
of eggplant has long been debated, according to the most accepted
hypotheses, eggplants were first domesticated over 4000 years ago in
south east Asia (Meyer, Karol, Little, Nee, & Litt, 2012). The putative
progenitor of eggplant, S. insanum L. is widespread in tropical Asia from
Madagascar to the Philippines (Syfert et al., 2016). India has been la-
belled the centre of diversity of varietal eggplant by some researchers
(Fraikue, 2016). Cultivation of this crop then spread through Africa, the
Near East and Europe.

Although there are several different eggplant species grown around
the world, the one most commonly cultivated is Solanum melongena.
Wild relatives of this eggplant species produce large spiny leaves and
small, green, hard, egg-shaped fruits. S. melongena differs from its wild
predecessors mostly in terms of fruit colour and shape. Ranging from
dark purple to black, with some green and white varieties, the fruit of
cultivated eggplant is larger than the wild type and more variable in
shape. Some eggplant varieties have rounder (S. melongena var. escu-
lentum) fruits whereas others have elongated (S. melongena var. ser-
pentinum) fruits (Swarup, 1995). Two other agriculturally important
species of eggplant are commonly grown and consumed in Africa: So-
lanum aethiopicum and Solanum macrocarpon. Unlike S. melongena, these
species are grown for their nutritious leaves. S. aethiopicum is a shrub-
like plant with hairy or glabrous leaves. Based on leaf and fruit mor-
phology and uses, S. aethiopicum is grouped into four accessions (Acu-
leatum, Gilo, Kumba, and Shum). The Gilo group is the most important
group in the S. aethiopicum complex with its large and rounded edible
fruits (Gramazio et al., 2016). S. macrocarpon is grown solely for its
large, glabrous leaves. It produces small yellow-orange fruits which are
not edible (Macha, 2005).

3. Bioactive compounds in eggplant

3.1. General

Plant secondary metabolites are not essential for basic plant pro-
cesses; however, traditional and modern medicine rely on these
bioactive compounds which, with their antioxidant properties, are an
important source of remedies and pharmaceuticals. Phenolics and car-
otenoids are the main phytochemicals that help maintain human health
(Singh, Kaur, Shevkani, & Singh, 2015). Like other vegetables and
fruits, eggplants have a characteristic array of bioactive compounds,
including phenolics, carotenoids and alkaloids. The following sections
concentrate on the beneficial phytochemicals present in eggplant.

Table 1
Nutritional value of eggplant (USDA report 11209).

Nutrient Unit Value per 100 g

Proximates
Water g 92.3
Energy kcal 25.0
Protein g 0.98
Total lipid (fat) g 0.18
Carbohydrate, by difference g 5.88
Fibre, total dietary g 3.00
Sugars, total g 3.53

Minerals
Calcium, Ca mg 9.00
Iron, Fe mg 0.23
Magnesium, Mg mg 14.0
Phosphorus, P mg 24.0
Potassium, K mg 229.0
Sodium, Na mg 2.00
Zinc, Zn mg 0.16

Vitamins
Vitamin C mg 2.20
Thiamin mg 0.039
Riboflavin mg 0.037
Niacin mg 0.649
Vitamin B6 mg 0.084
Folate, DFE µg 22.0
Vitamin B12 µg 0.00
Vitamin A, RAE µg 1.00
Vitamin A, IU IU 23.0
Vitamin E (α-tocopherol) mg 0.30
Vitamin D (D2+D3) µg 0.00
Vitamin K (Phylloquinone) µg 3.50

Lipids
Fatty acids, total saturated g 0.034
Fatty acids, total monosaturated g 0.016
Fatty acids, total polysaturated g 0.076
Cholesterol mg 0.000
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3.2. Phenolic compounds

Eggplant is considered to be the best source of total phenolic acids
within cultivated members of the Solanaceae (Helmja, Vaher,
Gorbatšova, & Kaljurand, 2007). Several studies have shown that egg-
plant has a diverse phenolic content with significant variability among
eggplant lines (Chumyam, Whangchai, Jungklang, Faiyue, & Saengnil,
2013; Kaur, Nagal, Nishad, Kumar, & Sarika, 2014; Mennella et al.,
2012; Prohens et al., 2013; Okmen et al., 2009). The total phenolic
content (ranging from 23mg/100 g DW to 1,168,100 mg/100 g DW) of
eggplant cultivars and wild relatives is presented in Table S1 which also
includes some other major phenolic acids, flavonoids and tannins
identified by various researchers. Harvesting season has an effect on
phenolic acid content in eggplant (García-Salas, Gómez-Caravaca,
Gómez-Caravaca, Segura-Carretero, & Fernández Gutiérrez, 2014).
Most of the phenolic compounds decreased from spring to summer,
suggesting that high temperatures have a negative effect on phenolic
content. This information might be a guide for the agricultural sector in
determining a suitable time for harvesting eggplants with high phenolic
compound content.

Supplementary data associated with this article can be found, in the
online version, at https://doi.org/10.1016/j.foodchem.2018.06.093.

Evidence suggests that the phenolic acid and tannin contents of
eggplant’s wild relatives and landraces are even higher than that of
cultivars (Kaur et al., 2014; Ossamulu, Akanya, Jigam, & Egwim, 2014;
Prohens, Burruezo, Raigon, & Nuez, 2007; Prohens et al., 2013; Raigon,
Rodriguez-Burruezo, & Prohens, 2010). The wild relative S. incanum has
more total phenolic compounds than S. melongena; however, there are
no significant differences between the phenolic acid profiles of wild
type and those of cultivated eggplant (Raigon et al., 2008). S. incanum
has recently been used in breeding programmes to improve the phe-
nolic acid content of commercial eggplant lines (Prohens et al., 2013).
Landraces represent another useful source of variation which can help
selection and breeding programmes. Despite the antioxidant benefits of
phenolics for the plant and human consumers, it is important to re-
cognize that high phenolic acid content also brings some disadvantages,
such as accelerated fruit browning (Tan, Kha, Parks, & Roach, 2016).

Browning of fruits and vegetables is a major problem in the food
industry as it is one of the greatest causes of quality loss during post-
harvest and processing. In general, browning is caused by enzymatic
oxidation of phenolic compounds and polyphenol oxidase (PPO) is the
main enzyme in this degradation. Peroxidase (POD) activity can also
cause browning but is a less significant contributor than PPO (Mishra,
Gautam, & Sharma, 2013). Several studies have characterized PPO
activity in different eggplant cultivars in different environments.
However, the main focus is on reducing the level of browning by dif-
ferent methods. For example, browning was significantly inhibited by
cutting, using a thin, sharp blade, and immediate dipping in water for
10min, followed by ambient air-drying and packaging. Because, such
cutting caused less physical injury and cell death, it resulted in reduced
leaching of phenolics and polyphenol oxidase activity and hence less
browning (Mishra, Gautam, & Sharma, 2012). In other work carried out
by Dogan, Arslan & Dogan (2002), PPO enzyme activity for three
eggplant cultivars decreased with increasing temperature and in-
activation time, and showed very little activity at about 60 °C.

Flavonoids are significant phenolic compounds in eggplant.
Eggplant leaves and fruits have different flavonoid profiles. While
kaempferol, quercetin, apigenin and isorhamnetin are minor com-
pounds in eggplant fruit (Huang, Wang, Eaves, Shikany & Pace, 2007),
kaempferol accumulates in the leaves (Piao et al., 2014). Solanum an-
guivi, African eggplant, might be an exception as it had high levels of
some flavonoids, such as rutin and quercetin (Elekofehinti et al., 2013).
This result might suggest that other eggplant species should be explored
for potentially high levels of flavonoids. Although tannins are one of the
major groups of flavonoids, there are not many reports on tannin
content in the eggplant literature. Alkurd, Takruri & Al-Sayyed (2008)

measured tannin content in 39 plants used in the Jordanian diet and
found that eggplant had nearly two-fold more tannins than had tomato.

Hydroxycinnamic acids (HCA) and their derivatives are the most
prevalent class of phenolic acid conjugates in eggplant (8.6–13.6% of
the total phenolic acid conjugates) (Stommel, Whitaker, Haynes &
Prohens, 2015), and there are significant differences in individual HCA
profiles among eggplant cultivars (Whitaker & Stommel, 2003).
Chlorogenic acid (CGA) (Fig. 1a), an ester of HCA, is the single most
abundant phenolic compound in eggplant (ranging from 4240 to
9610mg/kg) (Medina, Orona, Rangel & Heredia, 2017; Plazas, Andujar
et al., 2013; Whitaker & Stommel, 2003). Caffeoylquinic acid (CQA)
derivatives show high antioxidant capacity and are found in high
concentrations in eggplant and related Solanum species (Whitaker &
Stommel, 2003). The content of potentially health beneficial HCA
conjugates is substantial in eggplant cultivars. The data on HCA con-
jugates will help in development of new cultivars with optimal HCA
composition and content.

Anthocyanins are naturally occurring pigments in eggplant. They
are concentrated in the fruit peel, ranging from 80 to 850mg/kg peel
with variability due to agronomic and genetic factors, intensity and
type of light, temperature, processing and storage (Dranca & Oroian,
2016). Delphinidin glucosides (derivatives of delphinidin anthocya-
nidin) are one of the major anthocyanins of eggplant peel and impart a
dark purple colour (Li & Ding, 2012; García-Salas et al., 2014). Acyl-
glycosides (for example nasunin shown in Fig. 1b) have also been
identified in Japanese eggplant varieties (Casati, Pagani, Braga, Scalzo
& Sibilia, 2016).

Consumers generally feel that organic foods are healthier and more
nutritious. Metabolomics have been used to test this notion. Organically

Fig. 1. Chemical structures of phenolic acids, (a) chlorogenic acid, (b) nasunin.
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grown eggplants were found to have higher levels of total phenolics
(498mg/kg) than conventionally grown (382mg/kg) eggplants
(Raigon et al., 2010). However, fruit of the American variety ‘Black-
bell’, grown under organic and conventional conditions, had nearly
identical phenolic contents (8900 and 9900mg/kg, respectively)
(Luthria et al., 2010). These results show that the amount of phenolic
compounds depends more on the cultivar than on growing conditions.
In other work, conventional (50mg CatE/100 g) and organic (49mg
CatE/100 g) cultivation did not have a significant effect on flavonoid

content (Zambrano-Moreno, Chávez-Jáuregui, Plaza, & Beaver, 2015).

3.3. Carotenoids

Carotenoids are lipophilic molecules and mostly found in yellow-
and orange-coloured vegetables and fruits. Carotenoids serve as ac-
cessory pigments in photosynthesis and also protect the photosynthetic
apparatus from excess energy (Ahmed et al., 2014). These pigments are
important in the food industry as colorants and their health benefits

Fig. 2. Chemical structures of eggplant carotenoids, (a) lutein, (b) zeaxanthin.

Fig. 3. Chemical structures of eggplant glycoalkaloid, (a) α-solamargine, (b) α-solasonine.
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have made them popular as dietary supplements. Lutein (Fig. 2a) and
zeaxanthin (Fig. 2b) have displayed beneficial effects on age-related
macular degeneration (Benke, & Benke, 2014) and cataracts (Weikel,
Garber, Baburins, & Taylor, 2014). Although eggplant contains lower
levels of carotenoids than do some other vegetables, such as carrot and
tomato, some locally grown varieties of eggplant can have significant
amounts of carotenoids. For example, the best source of lutein and
zeaxanthin in vegetables and vegetable oils commonly consumed in
India is pumpkin, followed by chili and eggplant (Aruna, Mamatha, &
Baskaran, 2009). The carotenoid contents reported in some eggplant
species and cultivars are presented in Table S2.

Carotenoid levels are affected by various factors, such as develop-
mental stage of the plant, stress conditions, post-harvest conditions or
cooking treatments. Carotenoid levels are highest at early stages of
eggplant fruit maturity, then decrease during eggplant fruit ripening,
and post-harvest storage at 0 °C protects carotenoid levels (Zaro,
Keunchkarian, Chaves, Vicente, & Concellón, 2014). Heat treatment
(cooking, grilling and frying) decreases carotenoid levels (Arkoub-
Djermoune et al., 2016; Das et al., 2011). The effect of drought stress on
carotenoid profiles depends on the type of carotenoid. While carotenes,
chlorophylls, neoxanthin and violaxanthin contents declined, the
amount of zeaxanthin increased under stress conditions (Mibei,
Ambuko, Giovannoni, Onyango & Owino, 2017). There is growing in-
terest in carotenoids because of their potential as antioxidants to de-
crease the risk of certain cancers. Thus, metabolomic approaches are
necessary to expose the potential of eggplant carotenoids in different
varieties.

3.4. Glycoalkaloids

Glycoalkaloids are nitrogen-containing steroidal glycosides found in
members of the genus Solanum, including the crop species potato (S.
tuberosum), tomato (S. lycopersicum) and eggplants (S. melongena, S.
macrocarpon and S. aethiopicum). Glycoalkaloids have roles in plant
resistance against pests and pathogens (Sanchez-Maldonado, Schieber &
Gänzle, 2016). Two main steroidal glycoalklaoids (SGAs) found in
eggplant are α-solamargine (Fig. 3a) and α-solasonine (Fig. 3b)
(Blankemeyer, McWilliams, Rayburn, Weissenberg, & Friedman, 1998).
These SGAs have potential to treat different types of cancers, such as
gastric cancer (Ding, Zhu, Yang & Li, 2013), leukemia (Sun et al., 2011),
liver cancer (Ding, Zhu, Li, & Gao, 2012), lung cancer (Liu et al., 2004),
osteosarcoma (Li et al., 2011) and basal cell carcinoma (Punjabi, Cook,
Kersey, Marks, & Cerio, 2008). In addition to the anticarcinogenic ef-
fect, their antiparasitic activity was reported in the literature. Re-
searchers showed that SGAs have an antiparasitic effect on Leishmania
mexicana (Lezama-Dávila et al., 2016), Leishmania amazonensis
(Miranda et al., 2013) and Trypanosoma cruzi (Hall, Hobby & Cipollini,
2006; Chataing, Concepción, Lobatón, & Usubillaga, 1998). Although
they have beneficial effects, glycoalkaloids are toxic to humans and can
even cause death at high concentrations (3–5mg/kg body mass)
(Bagheri, Bushehri, Hassandokht & Naghavi, 2017). Market eggplant, S.
melongena, has lower levels of glycoalkaloids than the toxic dose (Table
S3). Levels in S. aethiopicum were similar to those of S. melongena and
thus safe for consumption. On the other hand, glycoalkaloid levels in
fruit flesh of S. macrocarpon were 5–10 times higher than the value
considered as safe in foods (Sanchez-Mata, Yokoyama, Hong, &
Prohens, 2010).

Glycoalkaloids are found at different concentrations in different
parts of the plants and at different developmental stages as is the case
with different wild relatives and varieties of eggplant. The highest so-
lasodine content was observed in flower buds, followed by leaf, phy-
siologically ripe fruit, young fruit, and mature fruit (Bagheri et al.,
2017). It is well known that glycoalkaloids are effective inhibitors of
cancer cells due to their toxic effects. However, the optimal levels for
toxicity should be further studied.

4. Antioxidant capacity of eggplant

Metabolic processes are necessary for the continuity of life.
However, these processes produce potentially dangerous entities called
reactive oxygen species (ROS). The primary source of ROS is in-
completely processed oxygen or electrons produced by the electron
transport chain (ETC) in the mitochondria (Elekofehinti et al., 2013).
The free radical groups of ROS are highly reactive and disrupt the
chemical bonds of nearby molecules. For this reason, ROS are usually
neutralized or recycled immediately after they are produced. This
function is generally performed by antioxidants (Akanitapichat,
Phraibung, Nuchklang, & Prompitakkul, 2010). If ROS are not neu-
tralized, proteins, lipids and DNA molecules can be damaged. This
damage has been linked to cancer, as well as neurodegenerative and
cardiovascular diseases. In addition, because the liver functions as a
recycling centre for these reactive species, liver diseases have been
associated with ROS (Cichoż-Lach & Michalak, 2014).

Humans can synthesize antioxidant enzymes, yet levels of these
enzymes are not high enough to cope with the ROS generated by me-
tabolic processes within the cells. For this reason, dietary sources of
antioxidants are required (Lobo, Phatak, & Chandra, 2010). Plants can
synthesize a variety of antioxidants, and many plants are rich in such
compounds. The antioxidant capacity of eggplant is ranked in the top
ten of 120 different vegetables (Nisha, Nazar, & Jayamurthy, 2009).
However, the total amount of these compounds varies (ranging from
2664 to 8247mmol trolox/kg) according to eggplant variety, fruit
shape and size and methodology. For example, antioxidant activity in
five types of eggplant (Chinese, Philippine, American Hindu, and Thai)
ranged from 95 to 539 µmol TE/g (Medina et al., 2014). A long eggplant
cultivar had the third highest antioxidant activity in FRAP
(5.31–8.66mmol eq. FeSO4/100 g); however, the same eggplant cul-
tivar showed the second-lowest antioxidant capacity in the ORAC assay
(0.383–0.594mmol TE/100 g) among 44 fruits and vegetables grown in
Andalucia (Morales-Soto et al., 2014). The skin of eggplant fruit shows
particularly high superoxide-scavenging (SOS) activity in inhibiting
hydroxyl radical generation (Kaneyuki, Noda, Traber, Mori, & Packer,
1999). Anthocyanin extracts have the greatest reducing power and SOS
activity while phenolic extracts show the greatest metal-chelating ac-
tivity (Boulekbache-Makhlouf, Medouni, Medouni-Adrar, Arkoub, &
Madani, 2013).

Antioxidant capacity and phenolic acid content are highly positively
correlated in eggplant (Chumyam et al., 2013; Okmen et al., 2009;
Plazas, Lopez-Gresa et al., 2013). Moreover, antioxidant capacity is
related to skin colour and fruit size. Small purple fruit showed higher
phenolic and anthocyanin contents and higher antioxidant capacity
than did other eggplant fruit types (long green, large purple, medium-
sized purple) (Nisha et al., 2009).

Storage and cooking temperatures can have significant effects on
the levels of antioxidants in food. The antioxidant content of eggplant
fruit increased during the first three days of storage at 0 °C and then
declined. In contrast, a gradual and continuous accumulation was ob-
served at 10 °C (Concellón, Zaro, Chaves, & Vicente, 2012). Re-
frigerated storage (4 °C) did not cause loss of antioxidant activity
(Murcia, Jiménez, & Martínez-Tomé, 2009). Heat treatment, such as
cooking, led to higher total phenolic content and antioxidant capacity
as compared to raw eggplant (Ramírez-Anaya, Samaniego-Sánchez,
Castañeda-Saucedo, Villalón-Mir, & Serrana, 2015, Chumyam et al.,
2013). The antioxidant activity of eggplant decreased in response to
grilling below 65 °C but increased after grilling at higher temperatures
up to 95 °C (Uchida, Tomita, Takemori, & Takamura, 2017). However,
not all cooking methods increase the antioxidant capacity of the egg-
plant. Frying caused 50% losses in antioxidant activity (Kalkan &
Yücecan, 2013).

Deep-fat frying is an extensively used cooking method that enhances
organoleptic properties but reduces nutritional value and compromises
the antioxidant content of foods. Oxidation, hydrolysis, polymerization,
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isomerization and cyclization reactions occur in the oil during the
frying process. Synthetic antioxidants, such as butylated hydroxyl ani-
sole, are added to edible oils to improve their oxidative stability but
these compounds may have toxic and carcinogenic effects. However,
natural antioxidants released during cooking can help protect the oil
from lipid oxidation. Thus, eggplant has been investigated as a source of
natural antioxidants for extending the usability of frying oil. The high
polyphenol content of eggplant peel juice helped to enhance the oxi-
dative stability of frying oil (Basuny, Arafat, & Kamel, 2013).

5. Health benefits of eggplant

Besides its agricultural and nutritional importance, eggplant has a
number of medicinal benefits (Table 2). In several studies, extracts from
eggplant fruits were shown to have excellent therapeutic effects on
warts, burns, and many inflammatory diseases, such as stomatitis, ar-
thritis, and gastritis (Im et al., 2016). The wide range of secondary
metabolites produced by eggplant, including antioxidant compounds,
glycoalkaloids and vitamins, seems to be the source of many of its
health benefits. For example, the phenolic compound chlorogenic acid
(5-O-caffeoyl-quinic acid; CGA), a major phenolic compound in the
fruit flesh (Prohens et al., 2013), provides many benefits for human
health, such as antioxidant, anti-inflammatory, cardioprotective, anti-
obesity, and anti-diabetic properties (Plazas, Andujar et al., 2013;
Plazas, Lopez-Gresa et al., 2013). CGA also demonstrates anti-carcino-
genic effects by inducing apoptosis in many human cancer cells, such as
leukemia and lung cancer cells (Tajik, Tajik, Mack & Enck, 2017).
Afshari et al. (2016) demonstrated that an eggplant extract had a more
toxic effect on cancer cells than on normal cells. The antibacterial
properties of methanolic extracts of eggplant fruits have been tested
and shown to be effective against S. aureus, V. cholera, B. subtilis, B.
cereus, E. coli and Pseudomonas sp. (Ahmed, Mubassara & Sultana,
2016). Although the results are promising, more studies are needed on
the bioactive compounds of eggplant extracts and their possible me-
chanisms of action against cancer cells.

Anthocyanins have long been valued for their colouring properties;
however, their roles in helping to prevent neuronal diseases, cardio-
vascular illnesses, cancer, diabetes, inflammation, and many other
medical conditions are now becoming clear. The health-promoting ef-
fects of anthocyanins are mostly related to their antioxidant activity.
Different anthocyanins have shown high antioxidant activity by in vitro
and in vivo tests. It is known that high iron levels in cells cause lipid
peroxidation. Consuming purple eggplant, which has a high level of the
antioxidant nasunin (the major anthocyanin in eggplant skin), can help

prevent lipid peroxidation and ROS accumulation (Casati et al., 2016).
Anthocyanins appear to increase serum antioxidant capacity and help
prevent cardiovascular disease and hyperlipidemia by reducing LDL
(low density lipoprotein) oxidation. Basuny, Arafat & El-Marzooq
(2012) claimed that eggplant peel can be used in pharmaceuticals be-
cause of the reducing power of anthocyanins on cholesterol levels.
Anthocyanins also seem to have antiangiogenic activities (Matsubara,
Kaneyuki, Miyake & Mori, 2005) and help prevent inflammation by
inhibiting cyclooxygenases (COXs) (Lin & Li, 2017). Antiproliferative,
apoptotic, anti-inflammatory, antioxidant and antimutagenic effects
have also been observed in anthocyanin-treated gastrointestinal cancer
cells (Wang & Stoner, 2008). When added to the diet, anthocyanins
seem to have a role in preventing obesity by reducing serum trigly-
ceride and cholesterol and increasing high-density lipoprotein (HDL)
cholesterol (Seeram, Momin, Nair & Bourquin, 2001). Moreover, they
appear to control diabetes, are used in ulcer treatment, and help im-
prove cognitive function (Yousuf, Gul, Wani & Singh, 2016) and eye-
sight (Ghosh & Konishi, 2007). Thus eggplant phytochemicals may be a
potential source of antimicrobial agents as well as natural antioxidants.

As humans cannot synthesize carotenoids, they need to include
them in their diet. Consumption of carotenoid-rich foods has been as-
sociated with a decreased risk of several types of cancer (Linnewiel-
Hermoni et al., 2015). Lutein, zeaxanthin and β-cryptoxanthin have
shown beneficial effects on age-related muscular degeneration (Benke
& Benke, 2014), cataracts (Weikel et al., 2014), reducing cardiovascular
disease (Pietro, Tomo & Pandolfi, 2016) and protecting against sun-
burn-related disorders (Cooperstone & Schwartz, 2016). Vitamin A
deficiency is an important problem for school children in some coun-
tries. The introduction of carotenoid-rich eggplant in the diet of chil-
dren could help in reducing this problem (Kamga, Kouame, Atangana, &
Chagomoka, & Ndango, 2013).

Glycoalkaloids are reported to possess anti-cancer activity.
Solasodine, a naturally occurring aglycone of the glycoalkaloid in
eggplant, reduces human lung cancer cells in vitro (Shen et al., 2017).
Glycoalkaloids also have anti-inflammatory (Ferreira da Costa et al.,
2015) properties, and have been used to help lower blood cholesterol
(Friedman, 2006). Overall, glycoalkaloids seem to be a natural product
that can be used in the fight against cancer cells. However, more re-
search at the molecular level needs to be done.

The fibre content of eggplant promotes healthy digestion, which
helps the body get rid of waste materials and harmful toxins, thereby
reducing the risk of colon and stomach cancer (Fraikue, 2016). Egg-
plant’s high fibre and low soluble carbohydrate levels make it a good
choice for helping to manage type 2 diabetes (Nwanna, Ibukun & Oboh,

Table 2
Uses and health benefits of eggplant bioactive compounds.

Compound Use and Health Benefits Reference

Delphinidins Significantly reduce oxidative stress and blood glucose, counteract vascular inflammation Watson and Schönlau (2015)
Kaempferol Antioxidant defence against free radicals, reduces the risk of chronic diseases, especially cancer. Chen and Chen (2013)
Myricetin Antioxidative and cytoprotective effects, anti-carcinogenic actions, antiviral, antimicrobial properties, and anti-

platelet activity
Li and Ding (2012)

Quercetin Antioxidant, improves normal cell survival, antiviral, anti-inflammatory, antibacterial, and muscle-relaxing
properties

Jan, Kamli, Murtaza, Singh, and Ali
(2010)

Luteolin Biological and pharmacological activities, including antioxidant, anti-inflammatory, potentially useful in
treating atherosclerosis

Jiang, Li, and Wu (2013)

Isorhamnetin Intermediate of quercetin, antioxidant and antitumor activity on human hepatocellular cancer cells, prevents
endothelial cell injuries caused by oxidized low-density lipoprotein

Jaramillo et al. (2010)

Chlorogenic Acid Antioxidant, anti-inflammatory, cardioprotective, anti-obesity, anti –carcinogenic, and anti-diabetic properties Plazas, Andujar et al. (2013)
Lutein Non-provitamin A carotenoid, antioxidant in the retina, protecting the eye from inflammation and oxidative

stress
van Lent et al. (2016)

Zeaxanthin Strong antioxidant and pro-oxidant behaviour as well as anti-inflammatory effects, suppresses oxidative stress in
the retinal tissue

Manikandan et al. (2016)

Β-Cryptoxanthin Precursor of vitamin A, may help prevent free radical damage to biomolecules, prevention and treatment of
certain cancers

Lorenzo et al. (2009)

Tannins Enhance glucose uptake and inhibit adipogenesis. inhibit oxidation of LDL-cholesterol Kumari and Jain (2012)
Hydroxycinnamic Acids Antioxidant and free radical-scavenging properties, protect from side effects of chemotherapy El-Seedi et al. (2012)
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2013). African eggplant (Solanum kumba) was found to reduce blood
glucose levels in diabetic rats. These results suggest that a diet rich in
eggplant may be a good way to reduce hyperglycemia, hypertension
and oxidative stress in those with type 2 diabetes (Nwanna, Ibukun &
Oboh, 2016).

Hyperlipidemia and obesity can cause a variety of serious diseases.
A diet rich in products, aiding in lipid digestion and absorption in-
hibitory activities, may be beneficial for human health. Feeding albino
rats with dried eggplant was effective in lowering hypercholesterolemia
(Hussein, 2012). Green eggplant juice (Solanum aculeatissimum Jacq.)
was the most effective disruptor of micellar cholesterol which effec-
tively inhibits cholesterol solubility (Trisat, Wong, Lapphanichayakool,
Tiyaboonchai, & Limpeanchob, 2017).

Health-conscious consumers generally focus on the antioxidant,
phenolic and vitamin contents of foods. However, carbohydrates are an
indispensable part of the human diet and possess more health benefits
than they are generally given credit for. Polysaccharides have beneficial
biological activities, such as immunomodulation, antitumor effects and
antioxidant properties (Mei, Yi & Huang, 2017). Saccharides (such as
glucose, fructose, saccarose), sugar alcohols (e.g. sorbitol, mannitol,
inositol, myoinositol), and β-galactosides (e.g. raffinose, stachyose, and
galactosyl-cyclitols) are low molecular weight carbohydrates important
in nutrition. Eggplant is rich in saccharides, such as fructose
(13750mg/kg), glucose (13270mg/kg) and, to a lesser extent sucrose
(5030mg/kg) (Ayaz et al., 2015). S. melongena also contains inositol
and its derivatives which have positive effects on human health, in-
cluding the treatment of insulin resistance (Michell, 2007). A molecule
with therapeutic properties against Alzheimer’s disease pathologies,
scyllo-inositol (16mg/kg), was also reported to be present in eggplant
(Hernandez-Hernandez, Ruiz-Aceituno, Sanz & Martínez-Castro, 2011).
Mannitol, another carbohydrate with various physiological properties
within the cell, was found in low amounts in the same analysis. As
mentioned above, although carbohydrates constitute a major part of the
human diet, they have not been researched in detail, especially in
eggplant. Therefore, both simple sugar and polysaccharide levels in
different varieties of eggplant should be studied further.

6. Conclusion and future perspectives

Metabolomics and metabolic profiling are powerful techniques for
evaluating the biochemical and nutritional composition of plants. Many
bioactive compounds have not yet been discovered and adequately
characterized. Analytical tools and platforms, such as metabolomics
and metabolic profiling, have developed considerably, leading to the
discovery of various bioactive compounds and characterization of their
bioactivity in a less time-consuming and less laborious way. Exploration
of the plant world for bioactive compounds can be used to develop
pharmaceutical and agricultural products. Thus, metabolomics can help
inform breeding programmes aimed at improving crop quality. In the
Solanaceae family there have been numerous studies of metabolites in
tomato and potato. Although eggplant is an important source of nu-
traceuticals and pharmaceuticals, few studies have investigated com-
pounds in eggplant beyond phenolic acids and antioxidant capacity.
Moreover, primary metabolites, such as carbohydrates and amino acids,
have been largely ignored. Needless to say, eggplant cultivars con-
taining high levels of the aforementioned bioactive compounds should
be identified and more work should be done to understand the nutri-
tional and pharmaceutical value of eggplant. New breeding priorities
and strategies can then be developed for this valuable vegetable crop.
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