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Analysis of a new model of H1N1
spread: Model obtained via
Mittag-Leffler function
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Abstract
In the recent decades, many physical problems were modelled using the concept of power law within the scope of frac-
tional differentiations. When checking the literature, one will see that there exist many formulas of power law, which
were built for specific problems. However, the main kernel used in the concept of fractional differentiation is based on
the power law function x2l It is quick important to note all physical problems, for instance, in epidemiology. Therefore,
a more general concept of differentiation that takes into account the more generalized power law is proposed. In this
article, the concept of derivative based on the Mittag-Leffler function is used to model the H1N1. Some analyses are
done including the stability using the fixed-point theorem.
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Introduction

In the last decade, it was found that many physical
problems’ behaviour follows the power law. Also, some
powerful methods and mathematical models are shown
in the fractional order concept from all over the
world.1–5 However, for a specific physical problem,
there is a corresponding power law that can be used to
describe the future behaviour of the observed fact.6–10

This application of power law is found in many
branches of science and technology. For instance, in
statistics, a power law is used as a functional correla-
tion connecting two quantities, anywhere a relative
change in one quantity results in a comparative relative
alter in other quantity, independent of the original size
of those quantities, one quantity varies as power of
another. Nonetheless, the concept of fractional calculus
is based on the concept of power law, but the power
law used within this field is nothing more than x�l. The
concept of fractional differentiation has been used in
almost all the field of science, engineering, technology

and others. However, all these problems for which this
concept was applied do not necessarily follow the
power law based on the function x�l. Here is the failure
of the power law function x�l in statistics, a power law
function x�l has a well-defined average over a range of
½1,‘� only if a.2 and it has finite variance only when
a.3, but most applications of fractional differentiation
are done only when 0\a\1.6–10 To further broaden
the scope of fractional calculus, Caputo and Fabrizio
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suggested a fractional derivative based on the exponen-
tial decay law which is a generalized power law func-
tion. However, many other researchers testified that
the Caputo–Fabrizio operator is nothing more than a
filter with a fractional regulator. They based their argu-
ment upon the fact that the kernel used in this design is
not non-local; in addition, the integral associate is the
average of the given function and its integral. In many
solutions of the fractional differentiation based on the
power law x�l, the Mittag-Leffler function is mostly
present. The Mittag-Leffler function is of course the
more generalized exponential function; in addition, it is
also a non-local kernel.11–14 To solve the failures of the
Caputo–Fabrizio derivative, the fractional derivative
based on the Mittag-Leffler function was introduced
and used in some new problem with great success.15–19

It is important to know that where the power based on
x�l function relax then raise the Mittag-Leffler func-
tion more complex problems. In this article, we apply
the newly established derivative with non-singular and
non-local kernel by Atangana and Baleanu to model
the spread of influenza.

New fractional differentiation based on
Mittag-Leffler function

We present in this section the novel fractional opera-
tors based on the Mittag-Leffler function. The novel
fractional derivatives are known as Atangana–Baleanu
fractional derivative in Caputo sense (ABC) and
Atangana–Baleanu fractional derivative in Riemann–
Liouville sense (ABR). These definitions can be found
in the study of Atangana and colleagues;11,12 we shall
therefore present the definition as it is in the initial
work.11,12

Definition 1. Let f 2 H1(a, b), b.a and a 2 ½0, 1�, then
the definition of the new fractional derivative (ABC) is
given as

ABC
a Da

t f tð Þð Þ= B(a)

1� a

ðt
a

f 0(x)Ea �a
t � xð Þa

1� a

� �
dx ð1Þ

In their work, they clarified that the function B has
the same properties as that of Caputo and Fabrizio’s
definition.

Definition 2. Let f 2 H1(a, b), b.a and a 2 ½0, 1�, and
not necessarily differentiable, then the definition of the
new fractional derivative (ABR) is given as

ABR
a Da

t f tð Þð Þ= B(a)

1� a

d

dt

ðt
a

f (x)Ea �a
t � xð Þa

1� a

� �
dx ð2Þ

Definition 3. The fractional integral associate to the new
fractional derivative with non-local kernel is defined as

AB
a Ia

t f (t)f g= 1� a

B(a)
f (t)+

a

B(a)G(a)

ðt
a

f (y)(t � y)a�1dy

ð3Þ

Here also they reported that when alpha tends to
zero, the initial function is obtained, and when alpha
tends to 1, the classical integral is obtained.11,12

Analysis of existence and unicity of the
new system

Let us redefine the classical model of N1H1 spread by
replacing the time derivative by time fractional deriva-
tive, and we shall recall that the reason for the modifi-
cation has been presented in the ‘Introduction’ section.
Nevertheless, it is important noting that the concept of
local derivative that is used to describe the rate of
change has failed to model accurately some complex
real-world problems. Due to this failure, the concept of
fractional differentiation based on the convolution of
x�a was introduced, and also failed in some cases due
to the disc of convergence of this function. The Mittag-
Leffler function, that is the more generalized version,
can therefore be used in order to handle more physical
problems

ABC
0 Da

t S tð Þ= � bS(t)
qE(t)+ I(t)+A(t)

N(t)

ABC
0 Da

t E tð Þ=bS(t)
qE(t)+ I(t)+A(t)

N (t)
� dE tð Þ

ABC
0 Da

t I tð Þ= pdE tð Þ � g1I tð Þ
ABC
0 Da

t A tð Þ=(1� p)dE tð Þ � g2A(t)

ABC
0 Da

t R tð Þ= g1I tð Þ+ g2A(t)

ABC
0 Da

t C tð Þ= pdE tð Þ

ð4Þ

A very important fact in differential calculus is to
prove the existence and the uniqueness of the solution
of a given problem; therefore, in this section, we aim to
prove the existence of solutions for the new model. The
system state is made up of S,E, I ,A,R,C. The constants
used in this model are the same like in Tan et al.20 The
above system is equivalent to Volterra type, where the
integral is that of Atangana–Baleanu fractional inte-
gral. We shall recall that the Atangana–Baleanu frac-
tional integral of a function f (t) is the average of the
function f (t) and the Riemann–Liouville fractional inte-
gral. The proof is shown in theorem 1.
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Theorem 1. The following time fractional ordinary
differential equation

ABC
0 Da

t (f tð Þ)= u(t)� u(0) ð5Þ

has a unique solution which takes the inverse Laplace
transform and uses the convolution theorem below12

f (t)� f (0)=
1� a

B(a)
u(t)+

a

B(a)G(a)

ðt
a

u(y)(t � y)a�1dy

ð6Þ

With the theorem above, the system is equivalent to
the following

S(t)� g1(t)=
1� a

B(a)
�bS(t)

qE(t)+ I(t)+A(t)

N (t)

� �

+
a

B(a)G(a)

ðt
0

(t � y)a�1 �bS(y)
qE(y)+ I(y)+A(y)

N (y)

� �
dy

E(t)� g2(t)=
1� a

B(a)
bS(t)

qE(t)+ I(t)+A(t)

N (t)
� dE tð Þ

� �

+
a

B(a)G(a)

ðt
0

(t � y)a�1: �bS(y)
qE(y)+ I(y)+A(y)

N(y)
� dE yð Þ

� �
dy

I(t)� g3(t)=
1� a

B(a)
pdE tð Þ � g1I tð Þf g

+
a

B(a)G(a)

ðt
0

(t � y)a�1 pdE yð Þ � g1I yð Þf gdy

A(t)� g4(t)=
1� a

B(a)
(1� p)dE tð Þ � g2A(t)f g

+
a

B(a)G(a)

ðt
0

(t � y)a�1 (1� p)dE yð Þ � g2A(y)f gdy

R(t)� g5(t)=
1� a

B(a)
g1I tð Þ+ g2A(t)f g

+
a

B(a)G(a)

ðt
0

(t � y)a�1 g1I yð Þ+ g2A(y)f gdy

C(t)� g6(t)=
1� a

B(a)
pdE tð Þf g+ a

B(a)G(a)

ðt
0

(t � y)a�1 pdE yð Þf gdy

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð7Þ

A possibility of converting the above system to itera-
tive routine is given below

S0(t)= g1(t)
E0(t)= g2(t)
I0(t)= g3(t)
A0(t)= g4(t)
R0(t)= g5(t)
C0(t)= g6(t)

8>>>>>><
>>>>>>:

ð8Þ

Sn+ 1(t)=
1� a

B(a)
�bSn(t)

qEn(t)+ In(t)+An(t)

Nn(t)

� �

+
a

B(a)G(a)

ðt
0

(t � y)a�1 �bSn(y)
qEn(y)+ In(y)+An(y)

Nn(y)

� �
dy

ð9Þ

Sn+ 1(t)=
1� a

B(a)
�bSn(t)

qEn(t)+ In(t)+An(t)

Nn(t)

� �

+
a

B(a)G(a)

ðt
0

(t � y)a�1 �bSn(y)
qEn(y)+ In(y)+An(y)

Nn(y)

� �
dy

En+ 1(t)=
1� a

B(a)
bSn(t)

qEn(t)+ In(t)+An(t)

Nn(t)
� dEn tð Þ

� �

+
a

B(a)G(a)

ðt
0

(t � y)a�1: bSn(y)
qEn(y)+ In(y)+An(y)

Nn(y)
� dEn yð Þ

� �
dy

In+ 1(t)=
1� a

B(a)
pdEn tð Þ � g1In tð Þf g

+
a

B(a)G(a)

ðt
0

(t � y)a�1 pdEn yð Þ � g1In yð Þf gdy

An+ 1(t)=
1� a

B(a)
(1� p)dEn tð Þ � g2An(t)f g

+
a

B(a)G(a)

ðt
0

(t � y)a�1 (1� p)dEn yð Þ � g2An(y)f gdy

Rn+ 1(t)=
1� a

B(a)
g1In tð Þ+ g2An(t)f g

+
a

B(a)G(a)

ðt
0

(t � y)a�1 g1In yð Þ+ g2An(y)f gdy

Cn+ 1(t)=
1� a

B(a)
pdEn tð Þf g+ a

B(a)G(a)

ðt
0

(t � y)a�1 pdEn yð Þf gdy

Taking the limit for a large value of n, we expect to
obtain the exact solution.

Using Picard–Lindelöf approach to check the
existence

The proof is reached if one considers the following
operator

f1(t, x)= � bS(t)
qE(t)+ I(t)+A(t)

N (t)

f2(t, x)=bS(t)
qE(t)+ I(t)+A(t)

N (t)
� dE tð Þ

f3(t, x)= pdE tð Þ � g1I tð Þ
f4(t, x)= (1� p)dE tð Þ � g2A(t)

f5(t, x)= g1I tð Þ+ g2A(t)

f6(t, x)= pdE tð Þ

ð10Þ

It is clear that f1, f2, f3, f4, f5, f6 are contraction with
respect to x for the first function, y for the second func-
tion, z for the third function and p, r, s are fourth, fifth,
and sixth functions, respectively.

Alkahtani et al. 3



Let us consider

N1 = sup f1(t, x)k k
Ca, b1

, N2 = sup f2(t, y)k k
Ca, b2

N3 = sup f3(t, z)k k
Ca, b3

, N4 = sup f4(t, p)k k
Ca, b4

N5 = sup f5(t, r)k k
Ca, b5

, N6 = sup f6(t, s)k k
Ca, b6

ð11Þ

where

Ca, b1
= ½t � a, t + a�3 ½x� b1, x+ b1�=A1 3 B1

Ca, b2
= ½t � a, t + a�3 ½x� b2, x+ b2�=A1 3 B2

Ca, b3
= ½t � a, t + a�3 ½x� b3, x+ b3�=A1 3 B3

Ca, b4
= ½t � a, t + a�3 ½x� b4, x+ b4�=A1 3 B4

Ca, b5
= ½t � a, t + a�3 ½x� b5, x+ b5�=A1 3 B5

Ca, b6
= ½t � a, t + a�3 ½x� b6, x+ b6�=A1 3 B6

ð12Þ

However, the fixed-point theorem of Banach space
can be employed here together with the metric for our
set of equations by inducing the uniform norm as

f (t)k k‘ = sup f (t)j j
t2t�a, t + a�

ð13Þ

The next operator is defined between the two func-
tional spaces of continuous functions, and Picard’s
operator is defined as follows

O : C(A1,B1,B2,B3,B4,B5,B6)! C(A1,B1,B2,B3,B4,B5,B6)

ð14Þ

Defined as follows

OX (t)=X0(t)+X (t)
1� a

B(a)

+
a

B(a)G(a)

ðt
0

(t � y)a�1F(y,X (y))dy

ð15Þ

where X is the given matrix

X (t)=

S(t)
E(t)
I(t)
A(t)
R(t)
C(t)

8>>>>>><
>>>>>>:

, X0(t)=

g1(t)
g2(t)
g3(t)
g4(t)
g5(t)
g6(t)

8>>>>>><
>>>>>>:

, F(t,X (t))=

f1(t, x)
f2(t, x)
f3(t, x)
f4(t, x)
f5(t, x)
f6(t, x)

8>>>>>><
>>>>>>:

ð16Þ

Due to the fact that there is no disease that is able to
kill the whole world population, also the fact that the
number of targeted population is finite, we can assume
that all the solutions are bounded within a period of
time

x(t)k k‘� maxfb1, b2, b3, b4, b5, b6g ð17Þ

OX (t)� X0(t)k k

= F(t,X (t))
1� a

B(a)
+

a

B(a)G(a)

ðt
0

(t � y)a�1F(y,X (y))dy

������
������

� 1� a

B(a)
F(t,X (t))k k+ a

B(a)G(a)

ðt
0

(t � y)a�1 F(y,X (y))k kdy

� 1� a

B(a)
N = maxfN1,N2,N3,N4,N5,N6g

+
a

B(a)
Naa\aN � b= maxfb1, b2, b3, b4, b5, b6g

ð18Þ

Here, we request that

a\
b

N

We next evaluate additionally the following

OX1 � OX2k k‘ = sup
t2A

X1 � X2j j ð19Þ

With the definition of the defined operator in hand,
we produce the following

OX1 � OX2k k=
F(t,X1(t))� F(t,X2(t))f g 1�a

B(a)

+ a
B(a)G(a)

Ðt
0

(t � l)a�1 F(l,X1(l))
�F(l,X2(l))

� �
dl

�������
�������

ð20Þ

� 1� a

B(a)
F(t,X1(t))� F(t,X2(t))k k

+
a

B(a)G(a)

ðt
0

(t � y)a�1 F(l,X1(y))� F(l,X2(y))k kdy

� 1� a

B(a)
q X1(t)� X2(t)k k

+
aq

B(a)G(a)

ðt
0

(t � y)a�1 X1(y)� X2(y)k kdy

� 1� a

B(a)
q+

aqaa

B(a)G(a)

� �
X1(t)� X2(t)k k

� aq X1(t)� X2(t)k k
ð21Þ

where q\1. Since F is a contraction we have that
aq\1, the defined operator O is a contraction too.
This shows that the system under investigation is a
unique set of solution.
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Obtention of specific solutions via
iteration approach

Since the extended model is nonlinear, it is sometimes
difficult to have it solved using analytical method;
therefore, the need of an iterative approach is impor-
tant. The method based on integral transform and
iterative method will be used here to obtain a particular
set of solutions for the extended model. The integral
transform used here is the well-known Sumudu trans-
form operator which has the properties of keeping the
parity of the function. The following theorem is needed
for further investigation, and the initial introduction of
this theorem can be found in the study of Atangana
and Koca.12

Theorem 2. Let f 2 H1(a, b), b.a and a 2 ½0, 1�, the
Sumudu transform of ABC is given as12

ST ABC
0 Da

t (f tð Þ)
� �

=
B(a)

1� a

aG(a+ 1)Ea(�
1

1� a
pa)

	 

ST(f (t))� f (0)ð Þ

ð22Þ

Proof. Proof of the theorem can be found in the study
of Atangana and Koca.12

To solve the above system (4), we apply the Sumudu
transform of the Atangana–Baleanu fractional deriva-
tive of f (t) on the system with both sides. Then, we
obtain the below set

B(a)

1� a
aG(a+ 1)Ea(�

1

1� a
pa)

	 

ST(S(t))� S(0)ð Þ= ST �bS(t)

qE(t)+ I(t)+A(t)

N (t)

� �
B(a)

1� a
aG(a+ 1)Ea(�

1

1� a
pa)

	 

ST(E(t))� E(0)ð Þ= ST bS(t)

qE(t)+ I(t)+A(t)

N (t)
� dE tð Þ

� �
B(a)

1� a
aG(a+ 1)Ea(�

1

1� a
pa)

	 

ST(I(t))� I(0)ð Þ= ST pdE tð Þ � g1I tð Þf g

B(a)

1� a
aG(a+ 1)Ea(�

1

1� a
pa)

	 

ST(A(t))� A(0)ð Þ= ST (1� p)dE tð Þ � g2A(t)f g

B(a)

1� a
aG(a+ 1)Ea(�

1

1� a
pa)

	 

ST(R(t))� R(0)ð Þ= ST g1I tð Þ+g2A(t)f g

B(a)

1� a
aG(a+ 1)Ea(�

1

1� a
pa)

	 

ST(C(t))� C(0)ð Þ= ST pdE tð Þf g

ð23Þ

Rearranging, we obtain following inequalities where l= � 1
1�a

ST(S(t))= S(0)+
1� a

B(a) aG(a+ 1)Ea(lpa)ð Þ ST �bS(t)

qE(t)

+ I(t)+A(t)

N (t)

8>><
>>:

9>>=
>>;

ST(E(t))=E(0)+
1� a

B(a) aG(a+ 1)Ea(lpa)ð Þ ST
bS(t) qE(t)+ I(t)+A(t)

N (t)

�dE tð Þ

( )

ST(I(t))= I(0)+
1� a

B(a) aG(a+ 1)Ea(lpa)ð Þ ST pdE tð Þ � g1I tð Þf g

ST(A(t))=A(0)+
1� a

B(a) aG(a+ 1)Ea(lpa)ð Þ ST (1� p)dE tð Þ � g2A(t)f g

ST(R(t))=R(0)+
1� a

B(a) aG(a+ 1)Ea(lpa)ð Þ ST g1I tð Þ+ g2A(t)f g

ST(C(t))=C(0)+
1� a

B(a) aG(a+ 1)Ea(lpa)ð Þ ST pdE tð Þf g

ð24Þ

We next obtain the following recursive formula

Alkahtani et al. 5



Sn+ 1(t)= Sn(0)+ ST�1 1� a

B(a) aG(a+ 1)Ea(lpa)ð Þ ST �bSn(t)

qEn(t)

+ In(t)+An(t)

Nn(t)

8>><
>>:

9>>=
>>;

8>>><
>>>:

9>>>=
>>>;

En+ 1(t)=En(0)+ ST�1 1� a

B(a) aG(a+ 1)Ea(lpa)ð Þ ST
bSn(t)

qEn(t)+ In(t)+An(t)
Nn(t)

�dEn tð Þ

( )( )

In+ 1(t)= In(0)+ ST�1 1� a

B(a) aG(a+ 1)Ea(lpa)ð Þ ST pdEn tð Þ � g1In tð Þf g
� �

An+ 1(t)=An(0)+ ST�1 1� a

B(a) aG(a+ 1)Ea(lpa)ð Þ ST (1� p)dEn tð Þ � g2An(t)f g
� �

Rn+ 1(t)=Rn(0)+ ST�1 1� a

B(a) aG(a+ 1)Ea(lpa)ð Þ ST g1In tð Þ+ g2An(t)f g
� �

Cn+ 1(t)=Cn(0)+ ST�1 1� a

B(a) aG(a+ 1)Ea(lpa)ð Þ ST pdEn tð Þf g
� �

ð25Þ

And the solution of equation (25) is provided by

S(t)= lim
n!‘

Sn(t)

E(t)= lim
n!‘

En(t)

I(t)= lim
n!‘

In(t)

A(t)= lim
n!‘

An(t)

R(t)= lim
n!‘

Rn(t)

C(t)= lim
n!‘

Cn(t)

ð26Þ

Application of fixed-point theorem for stability
analysis of iteration method

Let (X , jj � jj) be a Banach space and H a self-map of X.
Let yn+ 1 = g(H , yn) be particular recursive procedure.
Suppose that F(H) is the fixed-point set of H and has
at least one element and that yn converges to a point
p 2 F(H): Let fxng�X and define en = xn+ 1�k
g(H , xn)k: If lim

n!‘
en = 0 implies that lim

n!‘
xn = p, then

the iteration method yn+ 1 = g(H , yn) is said to be H-
stable. Without any loss of generality, we must assume
that our sequence fxng has an upper boundary; other-
wise, we cannot expect the possibility of convergence.
If all these conditions are satisfied for yn+ 1 =Hyn

which is known as Picard’s iteration, consequently, the
iteration will be H-stable. We shall then state the fol-
lowing theorem.

Theorem 3. Let (X , jj � jj) be a Banach space and H a
self-map of X satisfying

Hx � Hy

�� ���C x� Hxk k+ c x� yk k

for all x, y in X where 0�C, 0� c\1: Suppose that H
is Picard’s H-stable.21

Now, we consider the recursive formula (25) with (4)
below

Sn+ 1(t)= Sn(0)+ ST�1 F � ST �bSn(t)

qEn(t)

+ In(t)+An(t)

Nn(t)

8>><
>>:

9>>=
>>;

8>>><
>>>:

9>>>=
>>>;

En+ 1(t)=En(0)+ ST�1 F � ST
bSn(t)

qEn(t)+ In(t)+An(t)
Nn(t)

�dEn tð Þ

( )( )

In+ 1(t)= In(0)+ ST�1 F � ST pdEn tð Þ � g1In tð Þf gf g
An+ 1(t)=An(0)+ ST�1 F � ST (1� p)dEn tð Þ � g2An(t)f gf g
Rn+ 1(t)=Rn(0)+ ST�1 F � ST g1In tð Þ+g2An(t)f gf g
Cn+ 1(t)=Cn(0)+ ST�1 F � ST pdEn tð Þf gf g

ð27Þ

where F= 1�a
B(a) aG(a+ 1)Ea(lpa)ð Þ is the fractional Lagrange

multiplier.

Theorem 4. Let H be a self-map defined as

H(Sn(t))= Sn+ 1(t)= Sn(t)+ ST�1 F � ST �bSn(t)

qEn(t)

+ In(t)+An(t)

Nn(t)

8>><
>>:

9>>=
>>;

8>>><
>>>:

9>>>=
>>>;

H(En(t))=En+ 1(t)=En(t)+ ST�1 F � ST
bSn(t)

qEn(t)+ In(t)+An(t)
Nn(t)

�dEn tð Þ

( )( )

H(In(t))= In+ 1(t)= In(t)+ ST�1 F � ST pdEn tð Þ � g1In tð Þf gf g
H(An(t))=An+ 1(t)=An(t)+ ST�1 F � ST (1� p)dEn tð Þ � g2An(t)f gf g
H(Rn(t))=Rn+ 1(t)=Rn(t)+ ST�1 F � ST g1In tð Þ+g2An(t)f gf g
H(Cn(t))=Cn+ 1(t)=Cn(t)+ ST�1 F � ST pdEn tð Þf gf g

ð28Þ

is H-stable in L1(a, b) if
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H(Sn(t))� H(Sm(t))k k� Sn(t)� Sm(t)k k(1� bC(Y))

H(En(t))� H(Em(t))k k� En(t)� Em(t)k k(1+bd(Y)� de(Y))

H(In(t))� H(Im(t))k k� In(t)� Im(t)k k(1+ f (Y)pd� g(Y)g1)

H(An(t))� H(Am(t))k k� An(t)� Am(t)k k(1+(1� p)dh(Y)� g2r(Y))

H(Rn(t))� H(Rm(t))k k� Rn(t)� Rm(t)k k(1+g1t(Y)� g2k(Y))

H(Cn(t))� H(Cm(t))k k� Cn(t)� Cm(t)k k(1+ pdr(Y))

ð29Þ

Proof. The first step of the proof shows that H has a
fixed point. To achieve this, we evaluate the following
for all (n,m) 2 N3N

H(Sn(t))� H(Sm(t))= Sn(t)� Sm(t)

+ ST�1 F � ST �bSn(t)

qEn(t)

+ In(t)+An(t)

Nn(t)

8>><
>>:

9>>=
>>;

8>>><
>>>:

9>>>=
>>>;

� ST�1 F � ST �bSm(t)

qEm(t)

+ Im(t)+Am(t)

Nm(t)

8>><
>>:

9>>=
>>;

8>>><
>>>:

9>>>=
>>>;

ð30Þ

Let us consider equality (30) and apply norm on
both sides and without loss of generality

H(Sn(t))� H(Sm(t))k k=
Sn(t)� Sm(t)

+ ST�1 F � ST

�bSn(t)

qEn(t)

+ In(t)+An(t)
Nn(t)

� �bSm(t)

qEm(t)

+ Im(t)+Am(t)
Nm(t)

0
BB@

1
CCA

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

����������������

����������������
ð31Þ

� Sn(t)� Sm(t)k k
+ ST�1 F � ST �bSn(t)Kn(t)+bSm(t)Km(t)f gf g
�� ��

ð32Þ

where

Kn(t)=
qEn(t)+ In(t)+An(t)

Nn(t)

Km(t)=
qEm(t)+ Im(t)+Am(t)

Nm(t)

ð33Þ

Because Nn(t) and Nm(t) are total population size, we
can consider equality as below

H(Sn(t))� H(Sm(t))k k� Sn(t)� Sm(t)k k(1� bC(Y))

ð34Þ

where C(Y) is the ST�1 F � STf g: With same idea, we
have following

H(En(t))� H(Em(t))k k� En(t)� Em(t)k k(1+bd(Y)� de(Y))

H(In(t))� H(Im(t))k k� In(t)� Im(t)k k(1+ f (Y)pd� g(Y)g1)

H(An(t))� H(Am(t))k k� An(t)� Am(t)k k(1+(1� p)dh(Y)� g2r(Y))

H(Rn(t))� H(Rm(t))k k� Rn(t)� Rm(t)k k(1+g1t(Y)� g2k(Y))

H(Cn(t))� H(Cm(t))k k� Cn(t)� Cm(t)k k(1+ pdr(Y))

ð35Þ

This completes the proof.

Conclusion

Many epidemiological models aim to describe compli-
cated physical problems. To explain the spread of a
given sickness, modellers use the concept of differentia-
tion to predict the future behaviours of the spread.
However, in the last passed years, many researchers
rely on the concept of rate of change that is based on
the Newton law. Other researchers make use of the con-
cept of power law that is based on the concept of frac-
tional differentiation. The fractional differentiation was
introduced to model some complicated physical aspect;
however, they have been found not quite efficient when
modelling the spread of some diseases. Recently, due to
the application of the Mittag-Leffler function in many
fields of science and engineering, the fractional differen-
tiation based on the generalized Mittag-Leffler function
was constructed, and some applications were made with
great success. In this work, we have extended the model
of H1N1 to the concept of fractional differentiation
based on the Mittag-Leffler function. We studied the
existence of the generalized model using the fixed-point
theorem. We presented the derivation of the solution
using the Sumudu transform, and the stability analysis
of the method is validated via the t-stable approach.
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