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a b s t r a c t

Prolonged use of an antineoplastic agent methotrexate (MTX), can cause numerous side

effects such as nephrotoxicity. The aim of this study was to examine the effects of MTX on

kidneys and demonstrate the protective effects of gallic acid (GA). Twenty-four, male, rats

distributed into three groups. Each groups consisted eight rats and only saline was

administered to the control group. The MTX group received a single dose (20 mg/kg) MTX

intraperitoneally. The MTX þ GA group received same dose MTX and 100 mg/kg GA orally

during the 7 days. Renal functions, oxidative stress markers, histopathological and

immunohistochemical changes were evaluated at the end of the experiment. Blood urea

nitrogen, creatinine, uric acid levels and tissue oxidative stress markers, total oxidant

status and oxidative stress index levels significantly increased and total antioxidant status

levels significantly decreased in MTX group compared with the control group. At the his-

topathological examination hemorrhages, tubular cell necrosis, glomerulosclerosis, in-

flammatory cell infiltrations and proteinous materials in tubules were noticed in MTX

group. Immunohistochemical examination revealed that increased expressions of serum

amyloid A (SAA), tumor necrosis factor alpha (TNF-a), prostaglandin E2 (PGE-2) and C-

reactive protein (CRP) in tubular epithelial cells of kidneys in this group. There were no

immunoreaction with SAA and CRP, only small number of PGE-2 and TNF-a positive

tubular epithelial cells were observed in MTX þ GA group. In conclusion, all evidence

suggested that oxidative stress caused MTX-induced nephrotoxicity and GA prevent the

kidney from the nephrotoxicity due to its antioxidant and anti-inflammatory activities.
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1. Introduction

Methotrexate (MTX) is an antineoplastic agent and it may be

used in the treatment of several maladies, such as cancer and

inflammatory diseases. Prolonged use of this agent led to

causesmany side effects on different organs including kidney,

liver, lung, testis, bone marrow and brain. Because of drug

excretion from the kidneys by glomerular filtration and active

transport, nephrotoxicity occurs more than other side effects.

Mainly, this side effect restricts the use of MTX for treatment.

Themost commonmechanismofMTX induced damages is

oxidative stress which triggered by inflammation due to pro-

ducing reactive oxygen species (ROS) [1e3]. The levels of the

various classical inflammatory mediators, such as an acute

phase protein C-reactive protein (CRP), proinflammatory

cytokine tumor necrosis factor-a (TNF-a) and Prostaglandin E2

(PGE-2) are important for monitoring the severity of inflam-

mation during the damage [4]. Additionally, serum amyloid A

(SAA) is the major acute-phase indicator of inflammation,

which is secreted in inflammation, trauma or infection [5].

Besides, it expresses by vitamin D-binding protein isoform-1

precursor, plasma kallikrein, and apolipoprotein A-I in a ma-

lignant tumor, multiple myeloma (MM), in which metho-

trexate is used for treatment [6].

There are several agents that used to ameliorate the po-

tential side effects of MTX due to their antioxidant and anti-

inflammatory activities [2,7]. Gallic acid (3,4,5-trihydrox-

ybenzoic acid, GA), a natural endogenous product, presented

in red wine, green tea, strawberries, pineapples, bananas,

lemons, gallnuts, sumac, witch hazel, tea leaves, oak bark,

and apple peels [8]. GA, strong chelating agent, protects

human cells or tissues against oxidative stress, by its biolog-

ical activities, including anti-oxidant and anti-inflammatory

effects [9e12]. It does not only protect the integrity of

plasma membrane, but at the same time increases the

regenerative and reparative capacity of the liver and kidney

[13]. Additionally, GA and its derivations have anticancer ac-

tivities due to severalmechanisms. For example, in one study,

lauryl gallate induced acute myeloid leukemia cell apoptosis,

resulted in down-regulation of anti-apoptotic proteins (Bcl-2,

Mcl-1, and Bcl-xL); and in another study, matrix

metalloproteinases-2 and matrix metalloproteinases-9

downregulation in GA treated human leukemia K562 cells

are mediated through the suppression of Jun N-terminal

kinases-1(JNK-1) mediated c-Jun/Activating transcription

factor 2 (Akt-2) and Akt/ERK-mediated c-Jun/c-Fos pathways

[14,15].

The aim of this study was to focus on the knowledge of the

effects of MTX on the kidneys, and demonstrate the protective

effects of GA through the CRP, TNF-a, PGE-2 and SAA

pathways.
2. Materials and methods

2.1. Experimental conditions

All experiments were performed in accordance with the

guidelines for animal research from the National Institutes of
Health, and were approved by the Committee on Animal

Research of Suleyman Demirel University, Isparta.

Twenty-four, male, Wistar Albino rats, weighing 300e350 g,

were placed in a temperature (21e22 �C) and humidity (60± 5%)

controlled room in which a 12:12 h light/dark cycle was

maintained. All the rats were fed with standard commercial

chow diet (Korkuteli yem, Antalya, Turkey). The rats were

distributed into three groups that consisted eight rats:

(I) Control group; 0,1 ml saline by oral gavage for 7 days,

and only intraperitoneally (i.p.) on the second day;

(II) MTX group; 20 mg/kg MTX (i.p., Methotrexate 50 mg/ml

flk, Kocak, Turkey) in a single dose on the second day

and 0,1 ml saline by oral gavage for 7 days [16];

(III) MTX þ GA group; 20 mg/kg MTX (i.p.) in a single dose on

the second day and 100 mg/kg GA by oral gavage for 7

days [17].

Twenty-four hours after the last GA administration, all rats

were anesthetized by intraperitoneal injection of 90 mg/kg

ketamine (Alfamin, Alfasan IBV, Turkey) and 10 mg/kg xyla-

zine (Alfazin, Alfasan IBV, Turkey). Blood samples were

collected for blood urea nitrogen (BUN), uric acid and creati-

nine analyses. Both kidneys were quickly removed and cut in

two parts, one half of the kidneys was fixed in 10% neutral

formalin solution for histopathological and immunohisto-

chemical examinations. The other half of the kidneys was

placed into the liquid nitrogen and stored at �20 �C until for

biochemical analyses of Total Antioxidant Status (TAS), Total

Oxidant Status (TOS) and Oxidative Stress Index (OSI).

2.2. Biochemical analyses

Kidneys were homogenized in ice-cold phosphate buffer (pH

7.4) to produce 10% homogenate. Tissues were homogenized

in a motor-driven tissue homogenizer (IKA Ultra-Turrax T25

Basic; Labortechnic, Staufen, Germany) and sonicator

(UWe2070 Bandelin Electronic, Germany) with phosphate

buffer (pH 7.4). Unbroken cells, nuclei and cell debris were

sedimented by centrifugation at 10000g for 10 min at 4 �C.
Protein levels in the homogenate were determined according

to the method of Bradford et al. [18]. This tissue homogenate

was used for to determination of TAS and TOS levels [19,20].

The TAS levels of samples were measured spectrophotomet-

rically at the 660 nm absorbance. The results were expressed

asmmol Trolox Eq/mg protein. The color intensity is related to

the total amount of oxidant (TOS) molecules in the samples.

The results are expressed in terms of mM hydrogen peroxide

equivalent per g liter (mmol H2O2 Equiv/L, mmol H2O2 Equiv/

mg protein). Determination of OSI, which is an indicative

parameter of oxidative stress level and the ratio of TOS to TAS

was calculated using the following formula [21]:

OSI (arbitrary unit) ¼ [(TOS, mmol/L) / (TAS, mmol Trolox

equivalent/L) X 100]

TAS and TOS were measured by the automated chemistry

analyzer Beckman Coulter AU5800 (Japan). Serum BUN, uric

acid and creatinine levelswere determined using theOlympus
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AutoAnalyzer (Olympus Instruments, Tokyo, Japan) and re-

sults are expressed as mg/dl.

2.3. Histopathological analysis

Kidney sampleswere fixed in 10% buffered formalin, routinely

processed, embedded in paraffin and then stained with he-

matoxylin and eosin (HE) to be examined by light microscopy.

Histopathological changes were graded in a blinded manner

by a specialized pathologist from another university who

unawareness the study groups.

Hyperemia, edema, inflammatory reaction, degeneration,

necrosis at tubular epithelium and proteinous material in

tubular lumen were evaluated according to the severity of

lesions using a 0e3 scoring system, where 0, normal; 1, slight

hyperemia and slight degeneration in tubular epithelial cells;

2, mild to severe degeneration and inflammatory reaction; 3,

necrosis of tubular epithelium, proteinous material in lumen,

and severe inflammatory reactions.

2.4. Immunohistochemical examination

All antibodies were purchased (Abcam, Cambridge, UK) and

used in 1/100 dilution. Kidney samples were immunostained

with primary antibodies, by PGE-2 [Anti-PGE-2 antibody

(ab2318)]; C-reactive protein [Anti-C Reactive Protein

antibody-Amino terminal end (ab65842)]; Anti-TNF-a antibody

(ab6671)]; and Serum amyloid A [Anti-Serum Amyloid A

antibody [mc1] (ab655)], according to the manufacturer's in-

structions. EXPOSE Mouse and Rabbit Specific HRP/DAB

Detection IHC kit (ab80436) used as seconder kit. All the slides

were analyzed for immunopositivity and a semiquantitative

analysis was carried out. Samples were analyzed by exam-

ining five different sections in each sample, which were then

scored from 0 to 3, according to the intensity of staining (0,

absence of staining; 1, slight, 2, medium and 3, marked).

Morphometric evaluation was made using the Database

Manual Cell Sens Life Science Imaging Software System

(Olympus Corporation, Tokyo, Japan).

2.5. Statistical analysis

Variables were presented as mean ± standard deviations.

ANOVA, and Bonferroni Dunn tests were used to compare

histopathological and immunohistochemical scores between

the groups. Biochemical parameters demonstrated normal

distribution. ANOVA and post hoc LSD test were used to
Table 1 e Biochemical markers of kidney.

Groups BUN (mg/dL)

Mean ± SD P value Me

Control (n ¼ 8) 22.4 ± 1.51 0.4

MTX (n ¼ 8) 25.4 ± 3.36 0.5

MTX þ GA (n ¼ 8) 17.8 ± 2.22*,** *: 0.009

**: 0.001

0.4

- Values are presented as means ± SD. The relationships between groups

- MTX: Methotrexate, GA: Gallic acid, BUN: Blood Urea Nitrogen.

- p values statistically significant compared with *: Control and **: MTX g
compare groups. Calculations were made using the SPSS 15.0

program pack. p < 0.05 was set as the value for significance.
3. Results

3.1. Biochemical analyses

All biochemical blood parameters BUN, creatinine and uric

acid levels increased in MTX group compared with the control

group, but only creatinine levels were statistically significant

(p ¼ 0.028). GA administration ameliorated all these

biochemical parameters significantly in MTX þ GA group

(p < 0.05) (Table 1).

In MTX group, oxidative stressmarkers, TOS and OSI levels

significantly increased (p ¼ 0.001 and p ¼ 0.021; respectively),

and antioxidant activity marker, TAS levels significantly

decreased compared with the control group (p ¼ 0.002). In

MTX þ GA group, GA treatment reversed these parameters

significantly comparedwith theMTX group (p < 0.05) (Table 2).

3.2. Histopathological analyses

In MTX group, some kidneys were slightly swollen and pale at

gross examination. Normal kidney architecture was observed

in the control and MTX þ GA groups. The histopathological

examination of the kidneys of rats in the MTX group showed

hemorrhages, inflammatory cell infiltrations, tubular cell ne-

crosis, glomerulosclerosis and proteinousmaterials in tubules

(Figs. 1e2). Histopathological lesions were scored between

0 and 3 according to lesions and group lesion scores calcu-

lated. Because of no pathologies were found in control group,

lesions in MTX treated groups were attributed to the MTX

toxicity.

At the immunohistochemical examination, there was no

immunoreaction in control group. Numerous strong SAA,

TNF-a, PGE-2 and CRP expressions were observed in tubular

epithelial cells of MTX group (Figs. 3e6); the strongest positive

reactionwas seen in proximal tubular epithelial cells (Table 3).

Small number of PGE-2 and TNF-a positive tubular epithelial

cell were observed in MTX þ GA group.
4. Discussion

Kidney toxicity can occur withMTX treatment in both low and

high doses. High doses of MTX make kidney damage in two
Creatinin (mg/dL) UricAcid (mg/dL)

an ± SD P value Mean ± SD P value

8 ± 0.01 1.06 ± 0.2

1 ± 0.02* *:0.028 1.15 ± 0.41

9 ± 0.01** **:0.005 0.54 ± 0.2*,** *:0.013

**:0.008

and results of biochemical markers are assessed by one-way ANOVA.

roups.
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Table 2 e Oxidative stress markers of kidney.

Groups (n ¼ 8) TAS (mmolTroloxequivalents/L) TOS (mmol H2O2 Equiv./L) OSI (Index)

Mean ± SD P value Mean ± SD P value Mean ± SD P value

Control 1.37 ± 0.1 16.64 ± 1.93 1.48 ± 0.22

MTX 1,08 ± 0.09* *: 0.002 22.69 ± 2.28* *: 0.001 1.90 ± 0.25* *: 0.021

MTX þ GA 1.23 ± 0.08** **: 0.044 16.65 ± 3.17** **: 0.002 1.35 ± 0.29** **: 0.007

- Values are presented as means ± SD. The relationships between groups and results of biochemical markers are assessed by one-way ANOVA.

- MTX: Methotrexate, GA: Gallic acid, TAS: Total antioxidant capacity, TOS: Total oxidant status, OSI: Oxidative stress index.

- p values statistically significant compared with *: Control and **: MTX groups.

Fig. 1 e Microscopical findings of the kidneys in MTX group by different magnification. Marked glomerulosclerosis in

glomeruli (black arrows), hemorrhages (arrow heads) and proteinous materials in tubules (white arrows), HE, (A)

Bar ¼ 200 mm, (B)and (C) Bar ¼ 100 mm, (D) Bar ¼ 50 mm.

Fig. 2 e Histopathological examination results of the kidneys. (A): Normal histological appearance of the kidney in a rat

belonging the control group, (B): Marked glomerulosclerosis (arrow head) and proteinous material in the lumen of the

tubules (arrows), (C): Relatively normal histology of a kidney in a rat from MTX þ GA group, HE, Bars ¼ 100 mm.
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ways: tubular injury with the precipitation of MTX in kidney

tubules, and decrease in the glomerular filtration rate [22]. It

can be amelioratedmostly by hydration andmaking the urine

alkaline. In patients receiving MTX treatment, the risk of
kidney toxicity was 2% [23]. To induce nephrotoxicity, we used

a single dose MTX which was described in the literature. Ac-

cording to the biochemical markers of kidney, MTX elevated

BUN, creatinine and uric acid levels, which is an indicator of

https://doi.org/10.1016/j.jfda.2017.05.001
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Fig. 3 e CRP immunoreaction in the groups. (A): Negative immunoreaction in a kidney of a rat belonging control group, (B):

Marked CRP expression in tubular epithelial cells (arrows) in a rat from MTX treated group, (C): Negative immunoreaction of

CRP in a kidney from a rat belonging MTX þ GA group, Streptavidin biotin peroxidase method, Bars ¼ 100 mm.

Fig. 4 e PGE-2 immunoreaction in the groups. (A): Negative immunoreaction in a kidney of a rat belonging control group, (B):

Marked PGE2 expression in numerous proximal tubular epithelium (arrows) in a rat from MTX treated group, (C): PGE2

expression in some tubules (arrows) in a kidney from MTX þ GA group, Streptavidin biotin peroxidase method,

Bars ¼ 100 mm.

Fig. 5 e TNF-a immunoreaction in the groups. (A): Negative immunoreaction in control group, (B): Marked TNF-a expression

in proximal tubular epithelium (arrows) in a rat from MTX treated group, (C): Slight immunoreaction in some tubular

epithelial cells (arrows) in a kidney from MTX þ GA group, Streptavidin biotin peroxidase method, Bars ¼ 100 mm.
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the renal function. Armagan et al. use the same single MTX

dose, and found similar biochemical findings about impair-

ment of renal function induced by MTX [7]. Besides, the

oxidative stress markers of the renal tissue, TOS and OSI

levels, were also similar to the blood markers. Ahmed et al.

investigated that MTX-induced nephrotoxicity and role of

protective effect of garlic aqueous extract in rats. Their results

shown blood urea and creatinine levels and MDA, adenosine

deaminase and nitric oxide higher and catalase and GSH

levels lower in the MTX administration group [24]. Similarly,

Asvadi et al., showed that MTX administration caused in-

crease blood urea and creatinine levels [25]. In this study,
nephrotoxicity was induced by single dose of MTX, as shown

in the literature andGA treatment ameliorated all biochemical

and oxidative stress markers.

GA treatment improve the kidney damage via antioxidant

property but there are no enough studies about oxidative

stress and antioxidant parameters TAS, TOS and OSI in MTX

induced kidney damage. Baradaran et al., found that Aloe

Vera, containing GA, has protective effects on gentamicin-

induced nephrotoxicity in male rats due to its antioxidant

activity, and Nabavi et al. found that GA isolated from Pelti-

phyllum peltatum protects the rat kidneys from the sodium

fluoride-induced oxidative stress [26,27]. According to this

https://doi.org/10.1016/j.jfda.2017.05.001
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Table 3 e Statistical analysis results of histopathological and immunohistochemical scoring results of kidney.

Control MTX MTX þ GA

Mean ± SD (max-min) Mean ± SD (max-min) P values Mean ± SD (max-min) P values

Histopathology 0.00 ± 0.00 (0-0) 2.40 ± 0.69* (1e3) 0.001 0.50 ± 0.16** (0e1) 0.001

CRP 0.00 ± 0.00 (0-0) 1.90 ± 0.73* (1e3) 0.001 0.00 ± 0.00** (0-0) 0.001

TNF alpha 0.00 ± 0.00 (0-0) 1.60 ± 0.69* (1e2) 0.001 0.40 ± 0.51** (0e1) 0.001

PGE-2 0.00 ± 0.00 (0-0) 2.20 ± 0.78* (1e3) 0.001 0.80 ± 0.91** (0e2) 0.001

SAA 0.00 ± 0.00 (0-0) 1.90 ± 0.73* (1e3) 0.001 0.00 ± 0.00** (0-0) 0.001

- Values are presented as means ± SD. The relationships between groups and results of histochemical markers area assessed by one-way

ANOVA and Bonferroni Dunn tests.

- MTX: Methotrexate, GA: Gallic Acid, CRP: C-Reactive Protein, TNF a: Tumor Necrosis Factor Alpha, PGE-2: Prostaglandin E2.

- p values statistically significant compared with *: Control and **: MTX groups.

Fig. 6 e SAA immunoreaction in the groups. (A): Negative immunoreaction in a kidney of a rat belonging control group, (B):

Marked SAA expression in proximal tubular epithelium (arrows) in a rat from MTX treated group, (C): Negative

immunoreaction in a kidney from MTX þ GA group, Streptavidin biotin peroxidase method, Bars ¼ 100 mm.
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study, it indicates that more time is needed to fit the damage

that shows the more significant rise in oxidative stress pa-

rameters than biochemical parameters. Also, according to

both findings, GA has huge antioxidant capacity that

normalized the abnormal outcomes.

Based on gross examination and histopathological find-

ings such as hemorrhages, inflammatory cell infiltrations,

tubular cell necrosis, glomerulosclerosis and proteinous

materials in tubules in MTX group, showed that oxidative

stress induced renal damage mainly occurred at histopath-

ological level in this study. In a previous study where the

equivalent dose was used, MTX caused marked degenerative

changes, such as tubular degeneration, tubular dilatation,

tubular cell swelling, and tubular damage [28]. MTX-induced

kidney toxicity was associated with the activation of the

systemic inflammatory response and proinflammatory cy-

tokines. Ibrahim et al. studied peroxisome proliferator-

activated receptor alpha and g ligands against

methotrexate-induced nephrotoxicity and found upregula-

tion of TNF-a and apoptotic markers [29]. In another study,

montelukast was used for the same indications and re-

searchers found that increased of BUN and serum creatinine

levels, and TNF-a expression in renal tissue, which was

similar to this study [30]. El-Boghdady used antioxidant

agents, such as ellagic acid and pumpkin seed oil, against

MTX-induced small intestine damage and found that

pumpkin seed oil decreased the intestinal damage by inhi-

bition of increased PGE-2, malondialdehyde, nitric oxide,

myeloperoxidase and xanthine oxidase levels [31]. In this

study, the acute inflammationmarkers TNF-a, PGE-2 and CRP

expressions also significantly increased in MTX
administrated group immunohistochemically. Strong anti-

oxidants, such as lycopene, combined with melatonin, pro-

vided significant reduction in TNF-a, interleukin 1b and

ceruloplasmin levels, which protected the kidney against

MTX induced nephrotoxicity [32]. In this study, GA treatment

decreased expressions of all these elevated inflammation

parameters: TNF-a, CRP, and PGE-2 immunohistochemically.

These findings reflected the anti-inflammatory effects of GA

on MTX induced nephrotoxicity. In accordance with these

parameters, SAA levels increased in MTX induced nephro-

toxicity, because it was secreted by the liver in response to

the inflammation [5]. Obayashi et al. found that plasma TNF-

a, interleukin-6, and SAA concentrations showed obvious

24 h rhythms with higher levels during the light phase, and

lower levels during the dark phase after the rheumatoid

arthritis crisis, and in Jamnitski et al. study on 100 patients

which used TNF-a blockers for rheumatoid arthritis, SAA

levels decreased 4 months after the beginning of the drug

therapy [33,34]. GA treatment decreased SAA expression

significantly in tubules of the kidney in this study. Olayinka

et al. reported that oxidative stress has been identified as a

toxicological mechanism of MTX nephrotoxicity. Free radi-

cals release and ROS plays a significant role in this toxicity

[35]. They reported MTX related nephrotoxicity in rats and

amelioration with GA treatment in biochemical parameters.

GA has ameliorative effect of cells even some drugs [36]

Similar findings were observed and mechanisms of the

MTX damage and ameliorative effect of GA evaluated in this

study.

In conclusion, all evidence suggested that oxidative stress,

caused by the abnormal production of ROS, has been accused

https://doi.org/10.1016/j.jfda.2017.05.001
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in the etiology of MTX-induced nephrotoxicity. GA prevents

the kidneys from the nephrotoxicity due to its antioxidant and

anti-inflammatory activities especially through the novel

biomarker of SAA. Due to the decrease of nephrotoxic side

effects, GA administration can be used for long term therapy.

Consequently, it could be combined with the pharmaceutical

formulation of MTX and may be used to treat cancer or

autoimmune diseases safely and effectively. Cancer patients

should consume more food sources which contain of GA

during the MTX therapy.
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