
Citation: Bişkin, O.T.; Candemir, C.;

Gonul, A.S.; Selver, M.A. Diverse

Task Classification from Activation

Patterns of Functional Neuro-Images

Using Feature Fusion Module.

Sensors 2023, 23, 3382. https://

doi.org/10.3390/s23073382

Academic Editors: Hasan Ogul

and Suzan Arslanturk

Received: 24 January 2023

Revised: 8 March 2023

Accepted: 20 March 2023

Published: 23 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Diverse Task Classification from Activation Patterns of
Functional Neuro-Images Using Feature Fusion Module
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Abstract: One of the emerging fields in functional magnetic resonance imaging (fMRI) is the decoding
of different stimulations. The underlying idea is to reveal the hidden representative signal patterns
of various fMRI tasks for achieving high task-classification performance. Unfortunately, when
multiple tasks are processed, performance remains limited due to several challenges, which are
rarely addressed since the majority of the state-of-the-art studies cover a single neuronal activity task.
Accordingly, the first contribution of this study is the collection and release of a rigorously acquired
dataset, which contains cognitive, behavioral, and affective fMRI tasks together with resting state.
After a comprehensive analysis of the pitfalls of existing systems on this new dataset, we propose
an automatic multitask classification (MTC) strategy using a feature fusion module (FFM). FFM
aims to create a unique signature for each task by combining deep features with time-frequency
representations. We show that FFM creates a feature space that is superior for representing task
characteristics compared to their individual use. Finally, for MTC, we test a diverse set of deep-models
and analyze their complementarity. Our results reveal higher classification accuracy compared to
benchmarks. Both the dataset and the code are accessible to researchers for further developments.

Keywords: DWT; emotion; feature fusion; fMRI; LSTM; memory; multitask; ResNet; resting fMRI;
task classification

1. Introduction

Functional magnetic resonance imaging (fMRI) is one of the powerful noninvasive
neuroimaging tools providing high spatial resolution to measure brain activity. Thanks to
the functional imaging properties, it is possible to measure brain activity and explore the
activated brain regions through the analysis of Blood Oxygenation Level Dependent (BOLD)
signals. In addition to this, it is widely used in research studies to answer a wide variety
of questions which are mainstays of clinical problems. These questions can be related to
the effects of a given drug, the alteration of brain phycology due to a psychiatric disorder,
or basic skills such as memory, speech, emotion, fear, and vision. Whether stimulated by
cognitive, behavioral, or affective tasks with different characteristics, fMRI has the ability
to show the associated and connected areas with the stimulus. It is also applicable when
the subject lies still during rest.

Theoretically, obtaining BOLD signals from the functional image is calculated re-
gardless of the type of the stimulus, i.e., the convolution of the hemodynamic response
function with the given stimulus [1]. Conventionally, statistically relevant and correlated
voxels above a specific threshold value are determined over time during the analysis of
the functional data. Thus, these voxels are aimed to be mapped to the given stimuli, and
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the neuronal activity is observed [2]. In this approach, knowing the stimulus set is the
fundamental condition.

The reversed question is, “is it possible to be able to infer the stimulus type by consid-
ering the neuronal activation patterns?” A challenging question appears since the signal
patterns of the intrinsic or spontaneous neuronal activity are highly complex and cannot be
identified visually or manually. However, through rapid developments in machine learning
methodologies, it has been demonstrated that a reverse approach called “brain decoding”
or “neuronal decoding” might answer this question. The underlying idea is to reveal the
hidden brain patterns that correspond to the different structures of the fMRI tasks. Various
studies showed that by using the brain activity signals, it is possible to identify some
patterns such as speaking [3], auditory stimuli [4], motor imagery [5], visual images from
simple objects to faces [6–8], imaged natural images [9], and intentions [10]. Reconstruction
of the colored face images has also been reported with moderate accuracy [11]. Although
some state-of-the-art studies offer using machine learning for behavioral coding [12], fa-
cial expression [13], or emotion, sentiment, and intensity prediction [14] on multitask
frameworks, they are differentiated for not using any functional neuronal data.

On the other hand, most of the neuronal studies have been conducted for decoding
only one of the neuronal activities, and classification of various tasks with distinctive
cognitive states with multiple subjects is rarely reported [15–17]. Thus, multi-variate
decoding is still an emerging field for studying brain functions [18,19].

In this study, we address the challenges and pitfalls associated with the Multi-Task
Classification (MTC) problem. Furthermore, we extend our dataset and analysis to include
the sub-phases of a specific task, which to the best of our knowledge have not been studied
before. In this respect, we introduce a new dataset for MTC and propose a novel two-stage
classification system for resolving associated challenges. The main contributions of our
study are as follows:

(1) First of all, we introduce a new benchmark for MTC. It presents a new collection
of fMRI datasets that bring together resting state, behavioral, cognitive, and affective
functional tasks of healthy adults. The importance of introducing such datasets is due to
the subjectivity of fMRI experiences (please see Section 2.1 for further details).

(2) We aim to provide foreknowledge about the activation patterns of signals on each
different simulated task. To enable this, we also present new and original affective and cognitive
tasks as part of the dataset discussed above (please see Section 2.2 for dataset details).

(3) We present a reliable, two-stage classifier that identifies the relationship between
stimuli and BOLD signal. The first stage aims to make an accurate prediction of the type of
stimulus from the activation patterns of BOLD signals. The second step is to determine to
which sub-phase of the fMRI task a given piece belongs. Figure 1 illustrates the flowchart
of the proposed algorithm.

(4) We propose a Feature Fusion Module (FFM) to extract and combine effective and
unique features of the neuronal signals.

(5) We generate a signature for each task by combining hand-crafted features (fre-
quency and time-frequency representations) with deep features and apply comprehensive
tests to measure MTC performance. Moreover, we analyze the diversity and complemen-
tarity of different models to check the possible advantages of using ensembles.

The organization of the rest of the paper is as follows: First, we introduce proposed
fMRI tasks and the dataset in Section 2. Then, we present the developed MTC framework
and FFM in Section 3. After that, we illustrate and discuss the computational results and
corresponding analysis in Section 4. Finally, we draw conclusions in Section 5.
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Figure 1. The proposed framework for automatic multitask classification of functional data. Raw
functional images are acquired from cognitive (based on a memory task (mem-fMRI)), behavioral
(based on a motor task (motor-fMRI)), and affective (based on an emotion task (em-fMRI)) fMRI tasks
and a resting-state fMRI scan. All BOLD signals for N subjects (differs according to the dataset) are
processed with the standard preprocessing steps with SPM. In FFM, the feature generation procedure
is as follows: (i) each signal is decomposed into its low-frequency and high-frequency components
with DWT and FFT; (ii) BOLD signals are converted into an image and fed into a ResNet-50; (iii) an
LSTM block is employed to the BOLD signals. Once the three-step procedure is completed, all
features are combined, and the most relevant features among them are selected with the MRMR
algorithm. Finally, the obtained feature vector is fed into the Fully Connected Network (FCN) to
conduct the task-based multitask classification (Stage I). For the sub-phase classification (Stage II),
the FFM should be run again before the FCN.

2. fMRI Datasets and Properties
2.1. fMRI Acquisitions and Dataset Properties

As stated above, we present a new collection of fMRI datasets. Even though some fMRI
datasets are shared as publicly available, they may not be suitable for use in a technical or
hypothetical manner. The dataset consisting of a certain conducted type of task may not
also be able to answer the questions in hypothesis. For example, emotions evoked visually
and auditorily result in different activations in different brain regions. Thus, the acquisition
of the data has crucial importance, in addition to the design and processing of the task and
the analysis of the data.

On the other hand, one of the most important restrictions of fMRI data is its produc-
tivity which stresses the importance of the public availability of the functional datasets.
This limitation may be caused either by the subjects and/or by the scanners. The same
results may not be acquired again even if the same fMRI task is used for different subject
groups. The fMRI tasks, especially the affective ones, tend to be subjective since it aims
to activate the memory/emotion-related areas of the brain. Accordingly, in such tasks,
one of the expected results is that diversity is shown among the different participants
(i.e., inter-subject variability). Aside from inter-subject variability, in the case of using the
same scanner, the results may be impacted even due to a difference in technicians and their
initial settings (intra-scanner reliability). This variability becomes even greater when we
run the same task on different MRI scanners (inter-scanner reliability). A comprehensive
study, comparing 1.5T and 3T, reports that although it does not guarantee uniform func-
tional imaging results, 3T provides better quality and more advantages than 1.5T since it
has better pulse sequences [20]. From a different perspective, another important issue is
inter-scanner reliability. Several studies on rs-fMRI datasets point out that the reliability of
the same scanner is higher than the inter-scanner reliability on test-retest scans in terms of
several metrics [21,22].

In the presented dataset collection, we minimize both resolution and inter-scanner
effects, as the images are taken with the same calibrations on a single scanner. At the same
time, we eliminate the effects of human differences through images taken by a single MR
technician. These issues state the difference and importance of the presented collection
among the currently available datasets.
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The datasets used in this study can be summarized as follows: Motor-fMRI is the
behavioral task that reflects the neuronal activity while subjects perform a motor action
(i.e., finger-tapping). Em-fMRI is the affective task, and it presents the emotional activity
while subjects are stimulated with intentional emotional change phases. Mem-fMRI is the
working visual memory task, i.e., the cognitive task, which consists of encoding, decoding,
and resting blocks. rs-fMRI is the resting state fMRI dataset that presents spontaneous
neuronal activity. We acquired the functional brain magnetic resonance images using 3 Tesla
(3T) with Siemens Magnetom Verio Numaris/4, Syngo MR B17 whole-body scanner while
subjects were performing the cognitive and affective tasks and during the resting state.

Additionally, a list of the datasets consisting of affective, cognitive, and behavioral
tasks are summarized in Table 1. The datasets are selected from the most prominent and
most possibly related ones. Here, they are presented by the task type, dataset name, subject
number, scanner type, and dataset description.

Here, we emphasize that none of their combinations are the same for either stimuli
type or scanner type as those we have presented. On the other hand, some of the public
datasets may not provide a guarantee about the accuracy of their components such as event
files [23]. As a matter of fact, such datasets could not have been analyzed correctly, thus
causing restriction of the usability of existing available datasets.

Table 1. There are several publicly available datasets acquired from affective, cognitive, and behav-
ioral tasks (or hybrid tasks, shown with an asterisk (*)). This table contains the prominent ones, along
with most related datasets for various forms and special cases such as the ones that contain healthy
and schizophrenic individuals.

Task Dataset Name #Subjects Scanner Type Description

Affective
(Emotion)

Emotional regulation Task [24] 30 1.5T GE Signa Twin Speed
Excite HD

Participant completes a task that induces emotional conflict
while behavioral and/or physiological data is collected. Reduced
negative emotional experience during cognitive reappraisal of
aversive images.

Affective videos [25] 11 3T Siemens Magnetom Trio
A task for determining whether affective states can be similarly
identified when participants view dynamic naturalistic
audiovisual stimuli.

Emotional music
comprehension/production in
depression [26]

19 3T Siemens Skyra
Subjects listen to music passively or are asked to sing overtly to
examine how neural processing of emotionally provocative
auditory stimuli is altered in depression.

EUPD cyberball [27] 20 3T Siemens
Magnetom Verio

A task in which subjects view a set of balls interacting in a game.
At some point, one of the balls is excluded from the game,
simulating social exclusion.

Cognitive
(Memory)

Incidental encoding task (Posner
Cueing Paradigm) [28] 18 3T Signa MR scanner

A task in which the subject is creating new memories without
purposely knowing that memorization is the task at hand. Their
memories are created thorough working in their environment
and picking up information in the process.

Working memory in healthy and
schizophrenic individuals [23]

40
(20 + 20) 3T Siemens Trio

A task in which participants view a continuous stream of letter
stimuli. The object of the task is to identify letter repetitions that
occur n-trials preceding the current stimulus. Letter n-back task.

Visual imagery and false memory
for pictures [29] 26 1.5T General Electric

Signa HDe
A task in which subjects create mental images according to the
given words and/or pictures of other common items.

* Block tapping task [30] 30 NA

A task used for assessment of visual short-term memory and
implicit visual-spatial learning. An examiner taps a series of blocks,
and the subject must repeat it in the correct sequential order. If the
sequence is correct, the examiner adds another tap to the next
sequence. Voluntary and TMS-induced finger movements.

Behavioral
(Motor)

Learning and memory: motor skill
consolidation and intermanual
transfer [31]

15 3T GE EXCITE 3 HD Subjects tap their fingers according to a visual, auditory, or no cue.

GDMotor [32] 29 NA Goal-directed motor task.

Visual and audiovisual speech
perception [33] 60 3T Siemens Prisma

A behavioral lip-reading task. Visual and audiovisual processing
of single words in adult participants. Words were presented in
quiet for auditory only, visual only, and audiovisual stimuli.

Simultaneous MRI-EEG during a
motor imagery neurofeedback
task [34]

30 3T Siemens Verio
A multimodal dataset of EEG and fMRI acquired simultaneously
during a motor imagery NF task, supplemented with MRI
structural data.
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The parameters of the imaging procedures are flip angle (FA) = 90◦ and band-
width = 2232 Hz/pixel for all scans. Repetition times (TR) and echo times (TE), the field
of views (FOV), and slice numbers vary according to the tasks. Except for the motor task,
all imaging procedures were conducted by SoCAT Research Lab in Ege University, Turkey.
The participants were right-handed, healthy, university student volunteers. The motor-task
dataset regarding the suitability of the task design, imaging procedures, etc., was acquired,
after a meticulous selection, from the rt-me-fMRI project of the Eindhoven University of
Technology and is publicly available [35].

2.2. Dataset Descriptions
2.2.1. Resting State fMRI (rs-fMRI)

Unlike task-based fMRI models, rs-fMRI focuses on spontaneous and intrinsically
generated neuronal activity in BOLD signals. During the scan, the participants are not
stimulated by any task, and they are asked to be comfortable, lie still, and not to think about
anything. The eyes of the participants may be open or closed. The regions that are active
in the brain in a resting state are called the default mode network, and no activation is
expected in areas outside of this network. In this dataset, the rs-fMRI task lasts 9 min in total.
The total brain imaging data consist of 37 slices, 64 × 64 matrix, FOV = 192 mm × 192 mm,
voxel size 3 × 3 × 3 mm, slice thickness 3 mm, TE = 30 ms, TR = 3000 ms. 180 image series
are acquired for 23 subjects ( f : 11, m : 12, µ = 22.54± 1.02).

2.2.2. Emotion fMRI (em-fMRI)

The emotion-based affective em-fMRI dataset is obtained through a social support
fMRI task [36]. The task consists of a game aimed at triggering the alteration of emotional
states through different levels of social support. During the task, the participant and his
three friends play a guessing game against a rival and win some money at the end. The
whole game period consists of three main support stages. The first stage is the high-support
stage, and participants win 80% of the game thus feeling the support of their friends.
However, the last part is the low-support stage, and participants lose 80% thus not feeling
any support from their friends. The middle stage is the medium-support stage that can
be thought as a transition stage between first and last stages. For each voxel, 600 image
series are acquired with 37 slices, 64× 64 matrix, the voxel size 3 mm× 3 mm× 3 mm,
3.5 mm slice thickness (with 1 mm gap), 200 mm× 200 mm FOV, TE = 30 ms, TR = 3000 ms.
The task lasts about 30 min (1818 s), and the data of 14 participants are marked as valid
( f : 7, m : 7, µ = 21.72± 1.6).

2.2.3. Motor fMRI

This is a finger-tapping experiment to identify motor-related regions in the brain. The
motor-fMRI task has a block design that includes repetitive rest and movement parts. In
the rest period, subjects stand without any movement for 20 s, and thereafter subjects are
asked to perform repetitive finger opening and closing movements for 20 s during the
movement period. Each of the rest and movement periods are repeated 10 times. A series
of 200 images of every voxel is acquired with 34 slices with a matrix of size 64 × 64, voxel
size = 3.5 mm × 3.5 mm × 3.5 mm, TR = 2000 ms, TE = 14 ms, FOV = 224 mm × 224 mm;
3.5 mm slice thickness for 28 subjects ( f : 8, m : 20, µ = 24.9± 4.7).

2.2.4. Memory fMRI (mem-fMRI)

Mem-fMRI has a block design consisting of sequential resting, encoding, resting, and
recall phases. During the encoding phase, subjects are asked to record the given name asso-
ciated with the given faces. And during the recall phase, subjects are asked both to decide
whether they are familiar with the faces and whether the name-face pairs are true or not.
The total brain imaging data consists of 37 slices, 64× 64 matrix, FOV = 192 mm × 192 mm,
voxel size = 3 mm × 3 mm × 3 mm, slice thickness = 3 mm, TE = 30 ms, TR = 3000 ms for
20 subjects ( f : 11, m : 9, µ = 23.35± 1.04).
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2.3. Signal Preprocessing

The standard preprocessing steps of the functional data were performed with the
Statistical Parametric Maps (http://www.fil.ion.ucl.ac.uk/spm/ accessed on 1 June 2022)
(SPM) toolbox, which runs on the MATLAB platform. All functional images were corrected
for involuntary head motion, which is known as the realignment step, and afterwards
the slices were synchronized temporally in the slice timing step. Later, the structural
scans of the subjects were registered to the mean images of fMRI scans, which is referred
to as the co-registration. The next preprocessing step was the segmentation, where the
brain is separated from its surrounding tissues. During segmentation, the structural
image was also normalized to a global standard space, which is the standard Montreal
Neurological Institute (MNI) single-subject template. Finally, normalized images were
spatially smoothed with an 8 mm isotropic Gaussian kernel.

2.4. ROI Selection and Signal Extraction

Region-of-Interest (ROI) selection is a sophisticated process, so it should be evaluated
very carefully by the experts according to the hypothesis of the research question. The
first step in determining the ROIs is to complete the first-level (individual level) for each
subject and each task. The hypotheses are searched by the contrast vectors, which are
based on the statistical inferences and on the functional data. Since the fMRI tasks are
built on different hypotheses, the contrast vectors also differ for each task. This results in
distinct ROIs among the fMRI tasks. The main point for the ROI selection is to be able to
conduct the second-level (group level) analysis after completing the first-level analysis.
Thus, the activation maps exhibit the active areas for the entire group. The signals have been
revealed by experts from the determined ROIs, which are illustrated in Figure 2. Nucleus
Accumbens (NAcc), associated with reward-related behaviors, is given in Figure 2a. In
Figure 2b, Broadmann Area 4 (BA4) is shown, which is related to the motor movements
for Em-fMRI. Finally, Occipital Face Area (OFA), which plays an important role for face
processing and recognition, distinguishing familiar faces, and responding to face stimuli, is
presented for the mem-fMRI in Figure 2c. For the rs-fMRI, the signals have been gathered
from all the determined ROIs additionally.
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http://www.fil.ion.ucl.ac.uk/spm/
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The selected ROIs have been specified as having a cluster size > 10 adjacent voxels with
the threshold of p < 0.05 with Family Wise Error (FWE) corrected on SPM12. ROI masks have
been generated using the WFU Pick Atlas. As the last step, all acquired neuronal signals that
constituted the signal pool have been normalized to zero mean and detrended before being
fed into the proposed model. In total, 19,221 signals are included in the data pool.

3. Proposed Multitask Classification Method and Feature Fusion Module
3.1. Feature Fusion Module (FFM)

A typical functional brain scan contains n x m x k number of voxels, and this number
is generally more than 100,000. When each and every voxel is considered, the resulting
time series signal is too large to process one by one. Moreover, it becomes error-prone
because of the possible conflicting sights of the experts. Furthermore, the data size increases
considerably in multi-subject and multitask scans. On the other hand, due to the nature
of the functional data, signals contain high amounts of noise and sporadic artifacts. For
this reason, the signal-of-interest may be suppressed, and valuable information could be
missed during the analysis. Thus, reducing the feature size is a fundamental processing
step before applying a machine learning methodology and the common point of view from
various neuroimaging studies [37,38]. In this way, the overfitting problem is prevented,
and the classification accuracy can be increased.

Considering the complexity of multitasking data, selecting the representative features
becomes an essential component of the proposed method. Therefore, to cope with the
entire signal set, we present a feature fusion module (FFM) as a combined feature extraction
method. FFM assumes that all the information of the neural patterns is involved in the
signals, and it aims to concatenate a feature set that reflects the unique characteristics of
a given task. As shown in Figure 1, FFM is constructed from four methods: Fast Fourier
Transform (FFT), Discrete Wavelet Transform (DWT), Residual Neural Network (ResNet),
and Long-Short Term Memory (LSTM). Thus, it is ensured that the most relevant features
can be represented with FFM since the BOLD signals have complex and diverse structures.
The FFM steps are given as follows:

1. Fast Fourier Transform: Fourier Transform (FT) is one of the main techniques for
extracting frequency components in a signal by projecting the signal onto the basis
functions. On the other hand, FFT is an algorithm used to compute discrete Fourier
transform in an efficient manner in terms of computational complexity. FFT is em-
ployed in order to extract the frequency components contained in the BOLD signals
by representing them in the frequency domain.

2. Discrete Wavelet Transform (DWT): It is well known that DWT can successfully
analyze complex problems, as the analyzed signal provides both frequency and
position information by using multi-resolution analysis [39]. It provides a coarse-to-
fine strategy so that it is very useful for characterizing different structured data. In
FFM, DWT is used to decompose the BOLD signals into a low-frequency signal and a
high-frequency signal (i.e., multiband signals).

3. ResNet: ResNet-50 is a residual network containing 50 layers. Residual connections in
the network prevent the model from exploding and vanishing gradient problems. It is
applied for image classification tasks and trained by using more than a million images
with 1000 classes from the ImageNet [40] database. The input size of the ResNet-50
network for images is 224× 224.

4. LSTM: LSTM, proposed in [41], is a deep learning architecture widely used for time
series applications. It is proposed in order to overcome the vanishing gradient prob-
lem of Recurrent Neural Networks. An LSTM memory has three gates which are
responsible for controlling the information flow throughout the memory. These gates
are named input, output, and forget gates. Input and output gates control the flow
of information, and the forget gate resets the memory of the LSTM cell when the cell
memory is not used anymore. The input gate also controls the cell state together with
the forget gate. Assume that xi is the input signal at time t; let the input gate, the
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output gate, and the forget gates be denoted as it, ot, and ft, respectively. Then, the
input gate can be expressed as

it = σ(Wi[ht−1, xt] + bi) (1)

Moreover, the output gate is given by

ot = σ(W0[ht−1, xt] + b0) (2)

and the forget gate is written as

ft = σ
(

W f [ht−1, xt] + b f

)
(3)

Here, the parameters given by Wi, W0, and W f notations are input, output, and forget
weight parameters. On the other hand, bi, b0, and b f utilized above the equations to
express cell gates represent the bias parameters. ht and ct are the hidden and cell
states, and they are expressed as the following forms, respectively:

ct = it � c̃t + ft � ct−1 (4)

ht = ot � tanh(ct) (5)

5. MRMR: The MRMR algorithm is one of the feature selection algorithms based on the
filter method. Filter method-based feature selection algorithms are computationally
efficient methods, and they can be generalized to different machine learning mod-
els [42]. The MRMR algorithm was proposed in [43] to find an optimal feature subset
by maximizing the relevant and minimizing the redundancy of feature set.

Let f n
k denote a single feature obtained from a single sample where k = 1, 2, . . . , K

represents the feature number and n = 1, 2, . . . , N indicates the sample number. Thus,
the vector of Fk =

[
f 1
k , f 2

k , f 3
k , . . . , f N

k
]

shows the k-th feature collected from all samples.
Therefore, {Fk}K

k=1 denote all features of the samples in a dataset. Let S represent the
selected feature subset, then redundancy is defined as [43,44]

min W, W =
1

|S|2 ∑Fi,Fj∈S I
(
Fi, Fj

)
(6)

where I(.) represents the mutual information, Fi is a feature from subset S, i.e., Fi ∈ S, and
Fj is a feature currently not selected, i.e., Fi /∈ S. In (6), |S| represents the number of selected
features in S. On the other hand, relevance, as follows [42–44], is given by

max V, V =
1
|S|∑Fj∈S

I
(
Y, Fj

)
(7)

Here, Y is the target classes given by Y = [y1, y2, . . . , yK].
The MRMR algorithm optimizes the criteria given in (6) and (7) simultaneously, and it

is accomplished by combining them in a single criterion. The two simplest combination
criteria can be formulated as [43]

max(V −W) (8)

max(V/W) (9)

Finding the solution of the above criteria requires O
(

N|S|
)

as researched by [43]. In-
stead, the algorithm runs in a more efficient way. The first feature is selected by considering
the largest relevance, i.e., the formulation given in (7), and is added to the selected feature
set, S. Then, other features are selected in incremental progress. Let Ω denote the set of all
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features of the samples. Thus, the feature set, except for the already selected features, can
be given as

ΩS = Ω− S (10)

Incremental progress runs by optimizing the following conditions [43]

max
Fj∈ΩS

I
(
Y, Fj

)
(11)

min
Fj∈ΩS

1
|S|∑Fi∈S I

(
Fi, Fj

)
(12)

Above, the condition given in (11) is equivalent to the condition in (7). On the other
hand, the condition in (12) is an approximation of the redundancy condition in (6) [43].
Finally, in order to select the new feature, the combination of redundancy and relevance
given in (8) and (9) become [44].

max
Fj∈ΩS

[
I
(
Y, Fj

)
− 1
|S|∑Fi∈S I

(
Fi, Fj

)]
(13)

max
Fj∈ΩS

[
I
(
Y, Fj

)
/

1
|S|∑Fi∈S I

(
Fi, Fj

)]
(14)

Here, (13) and (14) are named Mutual Information Difference (MID) and Mutual
Information Quotient (MIQ) criteria, respectively.

3.2. Multitask Classification Model

In this study, we are concerned with the classification of fMRI signals by employing
deep learning-based methods. In addition, we utilize feature fusion and feature selection
methods in order to both increase the classification performance of the model and to reduce
the dimension of the data. The classification of signals is used for the categorization of a
related signal into sub-categories by using some inherent features of the dataset. Assume
a sequence X = [x1, . . . , xT ] represents s signal with xt ∈ Rd,where d is the number of
dimension of data, xt, at time t. Thus, finding a nonlinear mapping function, f(.), matching
a sequence with a predefined labeled class is the main concern of a given classification
problem. Here, we propose employing cascaded and ensemble models for the classification
of fMRI signals.

The flowchart of the fMRI signal classification system proposed in this paper is given
in Figure 1. It consists of two main classification stages. The first stage, named Stage I, is the
task classification stage, and we determine the Em-fMRI, rs-fMRI, motor fMRI, and Mem-
fMRI classes utilizing the acquired fMRI signals. Additionally, in Stage II of the proposed
system, we classify Em-fMRI and Mem-fMRI signals into the sub-tasks the participant
performs during the experiments. An acquired Em-fMRI signal includes three different
emotions of the participant. Therefore, the Em-fMRI signal is classified into high-support,
medium-support, and low-support classes that reflect participants’ emotional changes
during the experiment. We also classify a Mem-fMRI signal into two different groups,
encoding and recall classes, which indicates the main phases of a Mem-fMRI task.

A BOLD signal acquired from a participant does not allow us to classify the signal
into sub-tasks or phases using only one stage system. This is the reason why we employ a
two-stage classification system. As stated above, an Em-fMRI signal includes three phases:
high-support, medium-support, and low-support. Therefore, before determining the phases
of an acquired signal, we need to know whether the signal is classified as the Em-fMRI task
in Stage I. Three different phases are sequentially and equally spaced in the EM signals.
Thus, the phase classification of the Em-fMRI signal is impossible without a two-stage
system because of the structure of data acquired from participants during the experiments.

Our proposed deep learning-based system (Figure 1) is used in Stages I and II. The
system is built up in order to utilize the feature extracted from 1D and 2D spaces. In order
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to extract 1D time-dependent features, time series fMRI signals are presented to the LSTM
model. At the same time, FFT and eight-level DWT coefficients of the time series signal are
calculated to utilize the frequency information of the signal. The third model used in the
proposed system is the ResNet-50 network. The 2D image input of ResNet50 are scalogram
images that contain time-frequency information about BOLD signals and are obtained
by employing a continuous wavelet transform (CWT). The frequency of BOLD signals
acquired by participants during the experiment may change over time based on the given
task. Especially the frequency variation can be observed during the transition from one
phase to another in the experiment. Therefore, we use features obtained from scalogram
images to grasp information about different sub-tasks. Finally, features obtained from
time-series signals and scalogram images using LSTM and ResNet-50 network, respectively,
are concatenated with FFT- and DWT-based features.

As stated in Section 3.1, f n
k indicates a single feature obtained from a single sample.

Then, f n =
[

f n
1 , f n

2 , f n
3 , . . . , f n

K
]

denotes all the features obtained from a single sample. The
features of a single sample extracted using the two-level cascaded LSTM network, the
ResNet-50 model, and FFT- and DWT-based methods shown in Figure 1 can be given by
fL ∈ R100×1, fR ∈ R2048×1, and fF ∈ R607×1. Here, sub-indices L, R, and F represent LSTM,
ResNet-50, and FFT-DWT-based features, respectively. In FFM, all features of a single
sample are concatenated and represented by fFFM ∈ R2755×1.

In our proposed system, we also employ the feature selection method in order to both
increase the performance of the system and reduce irrelevant data which increases the
computation time. Therefore, after accomplishing feature fusion, we employ a minimum
redundancy maximum relevance (MRMR) method on concatenated features extracted
using different networks. Using this method, the number of features is reduced to 512
and can be represented by fMRMR ∈ R512×1. Finally, selected features are presented to a
two-layer, fully connected network to classify the BOLD signals.

Figure 3 shows the 1D BOLD signal acquired from participants, the FFT of the signals,
and the scalogram images obtained by employing continuous wavelet transform (CWT)
for different tasks and phases used in Stage I and Stage II.
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4. Analysis and Results

All simulations we employ in this paper are performed on a PC having i7-9750H CPU
with a processor speed of 2.6 GHz and a memory of 16 GB. In order to use the computation
power of GPU, algorithms are run by utilizing the NVIDIA GTX 1660 Ti GPU with a
memory of 6 GB.

In our experiments, since the length of fMRI signals acquired by participants are
different, they are padded before being fed into the deep neural network at the beginning of
Stage I. This way, all fMRI signals presented to the network in Stage I become 1× 600 vectors,
and therefore, each signal can be represented by X = [x1, . . . , xT ] where xt ∈ R, t = 1, . . . T
and T = 600.

The dataset in this paper can be given by D =
{
(Xn, Yn) | Xn ∈ R1×T , Yn ∈ {1, C}

}
where n = 1, . . . , N and Xn represent the individual sample in the dataset. Here, N, T,
and C are total number of samples, the size of each sample, and the number of classes,
respectively. The total number of samples, that is, the number of collected signals from the
participants, N, is 19,221, and the size of each sample, T, is 600. Training and test samples
are divided using a k-fold cross validation approach by assigning the parameter k = 12.
Therefore, 17,620 signals are used for training, and 1601 signals are used for testing in each
experiment, and the 12 experiments are performed for performance measurements. The
number of classes, C, is four at Stage I and five at Stage II.

In the experiments performed in Stage I, we employed a two-layer LSTM network to extract
features from one-dimensional fMRI signals. In order to find the optimal model parameters for
a two-layer LSTM network, we search the hidden units in {50, 75, 100, 125, 150, 175, 200, 250},
learning rate, lr, in

{
10−2, 5× 10−3, 10−3, 5× 10−4, 10−4}, and the number of epochs in

{200, 300, . . . , 1000} on the validation set. At the same time, scalogram images of the
corresponding fMRI signals are given to the pretrained ResNet-50 network. We extract
scalogram features from the ResNet-50 model by using the output of the max-pooling layer
before the final FC layer. Thirdly, FFT and eight-level DWT coefficients of fMRI signals are
calculated. Finally, we concatenate the time-dependent features obtained from the LSTM
layer, image-based features obtained from ResNet-50, and the FFT-DWT-based features. To
be more similar to real-life scenarios, we use fMRI signals acquired from one participant at
each training process as test data. On the other hand, fMRI signals of the other participants
are considered as training data.

Numerical results for the task classification experiment are given in Table 2. Classifica-
tion performances of LSTM, Resnet-50, and feature fusion and feature selection based on
proposed models are computed in terms of precision, recall, and F1 score metrics.

Table 2. Classification performances of models for behavioral, cognitive, and affective tasks classifica-
tion experiment.

Model Metrics
fMRI Task (%)

Emotion Memory Motor Resting

LSTM
Precision 99.13 94.89 100.00 96.18
Recall 97.22 91.17 95.83 98.04
f1-Score 98.11 92.48 97.22 97.02

ResNet-50
Precision 96.54 97.39 100.00 96.69
Recall 99.02 90.80 98.75 98.91
f1-Score 97.67 93.79 99.32 97.76

Proposed
Precision 96.62 99.34 95.87 98.29
Recall 99.84 94.21 99.58 99.65
f1-Score 98.07 96.54 97.31 98.95

In Stage II, we aim to determine the emotions and memory activities of participants
using their Em-fMRI and Mem-fMRI signals, respectively. For this, signals determined
as Em-fMRI and Mem-fMRI in Stage I are classified into their sub-tasks using the given
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deep learning-based methods. Emotions of a participant are classified into high-support,
medium-support, and low-support. Assume that X is a 1× 600 vector and that it represents
the Em-fMRI signal acquired from a voxel for a particular participant. Thus, all three emo-
tions of a participant are included in the Em-fMRI signal, X. Moreover, the experiment is
designed in such a way that the emotional changes have the same time intervals. Therefore,
we divide the signals x into equal time intervals, x1, x2, and x3, before feeding the network.
Hence, x1, x2, and x3 become 1× 200 vectors obtained from the Em-fMRI signal. In order
to classify the signal X into sub-phases, we employ a similar FFM network except for the
parameters. The LSTM model in the FFM network has two layers with 150 and 100 hidden
units and dropout layers with 0.2 and 0.1 dropout ratios, respectively. Batch size and
epoch numbers are chosen as 256 and 500, respectively. Table 3 shows the classification
performances of LSTM, ResNet-50, and the proposed system in terms of precision, recall,
and F1 score metrics.

Table 3. Classification performances of models for emotion and memory phase classification experiments.

Model Metrics
Emotion (%) Memory (%)

High Medium Low Encode Recall

LSTM
Precision 78.33 76.11 83.63 97.30 97.47
Recall 81.70 70.92 83.17 94.18 98.33
f1-Score 78.73 72.60 81.78 94.68 97.74

ResNet-50
Precision 91.15 84.85 88.51 100.00 100.00
Recall 88.32 82.60 91.67 100.00 100.00
f1-Score 89.17 83.27 89.96 100.00 100.00

Proposed
Precision 94.93 92.57 92.55 100.00 100.00
Recall 95.02 87.99 96.32 100.00 100.00
f1-Score 94.79 89.94 94.32 100.00 100.00

Table 4 shows the overall accuracy of the task classification and sub-task classifications
accomplished in Stage I and Stage II, respectively. We can see from Table 4 that the proposed
model outperforms the LSTM and ResNet-50 models in cases where they are individually
used for classification purposes.

Table 4. Overall accuracy of models for task classification in Stage I, and emotion and memory phase
classification experiments in Stage II.

Model
Task and Sub-Task Classification (%)

Stage I Stage II-Emotion Stage II-Memory

LSTM 96.02 78.59 96.21
ResNet-50 96.85 87.53 100.00
Proposed 98.26 96.02 100.00

To compare the performance of the FFM model, the diversity measures of all models
are analyzed and presented in Table 5. Considering Table 5, it can be seen that the FFM
models increase the classification performance by targeting the test data which other
models miss. For example, in Stage I, the proposed method and LSTM both classify
the 18,375 samples correctly (hit), whereas both methods classify 271 samples incorrectly
(miss). However, the superiority of the proposed method can be seen where LSTM misses
504 samples, while FFM only misses 71. Similar observations can be made for ResNet-50
in Stage I. On the other hand, the FFM model especially correctly classifies the signals of
participants to determine the emotions and memory activities of participants in Stage II,
while other models cannot. In Stage II, LSTM misses 606 and 307 samples in emotion
and memory sub-phase classifications, respectively, whereas the FFM-based model has
73 misses in the emotion task and zero misses in the memory task.
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Table 5. Diversity of classifiers models.

Task
LSTM ResNet-50

Hit Miss Hit Miss

Pr
op

os
ed

Stage I Hit 18,375 504 18,482 397
Miss 71 271 118 224

Stage
II-Emotion

Hit 2813 606 3102 317
Miss 73 180 112 141

Stage
II-Memory

Hit 4604 317 4921 0
Miss 0 0 0 0

In Stage I, although the LSTM model performs better than the other models for
motor fMRI signals, the proposed system outperforms the other methods in the fMRI task
classification stage. The notable difference of our model can be seen in the emotion and
memory activity classification in Stage II. The overall accuracies of the systems also show
the advantage of our method. Additionally, we present the diversity of models to confirm
the validity of our model. Diversity results indicate that the FFM-based model can correctly
classify some of the signals, while other methods miss them. We believe that this result is
also an indicator of the power of FFM and the feature selection algorithm.

5. Conclusions

It is well known that brain signals contain specific information about neuronal activity
patterns. However, since the nature of BOLD signals is complexly structured, it is difficult
to reveal these hidden patterns from the acquired signals. Even though their identification
is possible thanks to the emergence of machine learning methods, multitask classification
is still a challenging problem due to various pitfalls, which are not analyzed in detail in the
literature since most of the state-of-the-art studies report single neuronal activity tasks.

In this paper, we propose a novel two-stage automatic multitask classifier for functional
neuroimaging data containing various structured fMRI tasks. In the first stage, the system
detects the main fMRI task (such as emotion, memory, motor, and resting) from a randomly
given BOLD signal. Then, at the second stage, the system aims to categorize a sub-phase
of the main task (such as high, medium, or low social support sub-phases for the emotion
task, and the encoding or decoding phase for the memory task).

To accomplish this, we propose a Feature Fusion Module (FFM) that creates a unique
signature for each task by combining hand-crafted features with deep ones. We show
through extensive analysis that FFM is able to reveal the characteristics of sub-phase signals
very effectively. To the best of our knowledge, this is the first automatic multitasking
classification method including both phase and sub-phase identification.

Evaluation results show that FFM with the feature selection method significantly
increases the classification performance. The performances of LSTM, ResNet-50, and
proposed FFM-based models are evaluated with precision, recall, and f-1-score metrics.
For Stage I, it can be seen that the proposed FFM-based model can distinguish the given
tasks, with over ~96% success compared to the other methods. The performance difference
between the proposed and other methods becomes even more apparent in the Stage II
classification. It is shown that the proposed method outperforms in emotion and memory
phase classification tasks with at least 92.55% performance precision. On the other hand,
the overall classification performance of the FFM-based model reaches 98.26% for task,
and 96.02% and 100.0% for sub-phase classifications for emotion and memory, respectively.
According to the diversity measures of the models, the proposed model has the advantage
of boosting classification performance by targeting test data that other models miss. It also
points out that it provides a high potential for distinguishing more complex tasks among
the outnumbered subject groups.

Diagnosis, follow-up, and personalized treatments are still big issues in many psychi-
atric and some neurological diseases. There is an attempt to overcome current problems
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through clinician observation and scales based on patients’ self-reports. Therefore, informa-
tion from any other tool like fMRI is important if the information is properly classified and
interpreted. The fMRI signals obtained from the various tasks are also consistent with the
extrinsic mode network (EMN), which is one of the brain networks activated with various
types of stimuli (memory, attention, conflict resolution, etc.) and negatively correlated with
the resting state [45]. In this context, it could be also possible to distinguish signals whether
they belong to the EMN or the default mode network (DMN).

Here, it is also worth discussing the methodology and the study from several points of
view. Although machine learning techniques yield very successful results for segmentation
and classification problems, it should be remembered that these techniques are data-specific
due to being data-dependent. Therefore, a method developed for one dataset cannot be
guaranteed to work for another one. In the best case, it requires fine-tuning. In this study, all
volunteers participating in the study were healthy, and a diagnostic-specific classification
was not the aim in this context. The proposed FFM method was carefully designed to work
on fMRI signals, and it can be said that it is technically possible to adapt it to the signals
acquired from diagnostic-specific fMRI tasks as well. However, nothing definite can be
said about its performance without further tests.

The other topic is the applicability in clinical translation. In medical practice, it is
known that self-evaluation tests are frequently used methods for their benefits in diagnosing
psychopathology. The common practice in clinical fMRI research is to evaluate the scales
with the neural correlates obtained with an MRI scan. Undoubtedly, these tests aimed to be
applied for the accuracy of the clinical diagnosis should also be selected appropriately by
specialists. fMRI tasks should also be designed as an experiment to reflect this. On the other
hand, the combination of clinical self-assessment scales and simultaneous fMRI acquisition
studies are also interesting and attractive, especially in specifying the diagnosis [46]. When
such methods are combined with novel methods, they can be guiding, especially in clinical
applications. In addition to this, the proposed FFM-based method can also contribute to
such specific diagnostic studies. It is technically possible to use the method to determine
the disease relationship in the outputs obtained when disease-related scales, such as Beck
Depression Inventory, are used together with fMRI. However, for accurate results, careful
analysis is required. New and current assumptions about brain–behavior relationships, such
as whole-brain or complexity, must also be addressed [47]. To improve further studies, the
largest possible number of variables that will affect brain activation must be taken into account.
Self-evaluation tests can also be included in these variables in this manner. Eventually, with
technical advances, fMRI results and clinical results will be complementary methods.
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