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Abstract: Smoking is currently one of the most important health problems in the world and increases
the risk of developing diseases. For these reasons, it is important to determine the effects of smoking
on humans. In this paper, we discuss a new system of distributed order fractional differential equations
of the smoking model. With the use of distributed order fractional differential equations, it is
possible to solve both ordinary and fractional-order equations. We can make these solutions with
the density function included in the definition of the distributed order fractional differential equation.
We construct the Nonstandard Finite Difference (NSFD) schemes to obtain numerical solutions of
this model. Positivity solutions are preserved under positive initial conditions with this discretization
method. Also, since NSFD schemes can preserve all the properties of the continuous models for
any discretization parameter, the method is successful in dynamical consistency. We use the Schur-
Cohn criteria for stability analysis of the discretized model. With the solutions obtained, we can
understand the effects of smoking on people in a short time, even in different situations. Thus, by
knowing these effects in advance, potential health problems can be predicted, and life risks can be
minimized according to these predictions.
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1. Introduction

In recent years, fractional calculus has become a popular field of study because of its effective
application in different scientific fields, such as statistics, applied mathematics, dynamics,
mathematical biology, control theory, optimization, and chaos theory. Using distributed order
differential equations, which is a general form of both ordinary and fractional-order differential
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equations, is very important for mathematical modeling. Also, distributed order differential equations
are important in biology and engineering models, as they include the density function. The selection
of the density function allows determining the dynamics of the models used in different situations.

Caputo introduced the idea of distributed order fractional derivative and informed about the usage
areas of differential equations with this type of derivative [8]. Caputo used the definition of distributed
order derivative in filter transfer functions and physical applications [9]. Then Hartley and Lorenzo
used continuously distributed order equations for fractional systems [17]. Bagley and Torvik
discussed the existence and solution of distributed order differential equations [5, 6]. Caputo
introduced distributed order differential equations in modeling dielectric induction and diffusion [10].

Recently, the studies of distributed order differential equations have attracted great attention from
many researchers. Ford and Morgado studied the existence and uniqueness of solutions of distributed
order differential equations [16]. Luchko proved the uniqueness and continuous dependence of the
distributed sequential time-fractional diffusion equation based on the initial conditions [25].

Refahi et al. focused on analytical solutions of distributed order fractional linear equation systems
in [35]. Katsikadelis introduced efficient numerical methods for distributed order fractional differential
equations in [20]. Diethelm and Ford presented the solutions to distributed order differential equations
numerically, including error analysis [12]. Li and Wu presented a numerical method for the distributed
order diffusion equation in [22]. Li and Wu used the classical quadrature formula, multi-term fractional
diffusion equations, and the kernel method. Morgado and Rebelo developed an implicit scheme for a
numerical approximation of the distributed order reaction-diffusion equation [31].

Studies on stability analysis of distributed order differential equations were presented by Aminikhah
et al. and Najafi et al. [3, 4, 37]. Amin et al. studied the distributed order time-fractional equations
solutions using the Haar wavelet method [2].

In this study, we aimed to obtain a numerical solution of a new distributed order fractional smoking
model. Because, by choosing the density function, we can find interpretations for different situations in
the smoking model. Hence, the effect of the smoking model on different parameters can be examined
with these comments.

Smoking affects almost all organs in our body and causes diseases. Smoking is harmful to the
lungs, and it destroys the vesicles (alveoli), the smallest unit where oxygen enters the lungs.
Therefore, it causes diseases such as pneumonia, asthma, and tuberculosis. Smoking also causes
significant damage to the immune system. So, it is very difficult for a smoker to overcome diseases
such as Coronavirus Disease (COVID), Severe Acute Respiratory Syndrome (SARS), and Middle
East Respiratory Syndrome (MERS). That’s why it is important to obtain data for smoking dynamics
in different situations. For these reasons, mathematical models related to the effects of smoking have
gained importance, especially after 2000.

First, Castillo-Garsow et al. proposed a simple mathematical model for smoking cessation [11].
They envisioned a system with a total fixed population divided into three classes: potential smokers,
former smokers, and smokers. Following this study, Sharomi and Gumel developed a smoking model
by introducing the light and chain classes [38]. Zaman improved the work of Castillo-Garsow and
developed a model that took into account the occasional smokers quotient in the smoking cessation
model [44]. After these studies, many articles have been written on stability analysis, mathematical
analysis, and approximate solutions on the smoking model. For detailed information, you can review
[15, 18, 19, 24, 40–42] resources.
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The rest of this paper is organized as follows. In Section 2, we present some definitions of
distributed order differential equations. In Section 3, we define and discretize a new distributed order
smoking model. Also here, some important information gives about the NSFD method and stability
analysis of the system. In Section 4, we show numerical simulations graphically. Finally, in Section 5,
we discuss the results and conclude the paper.

2. Basic definitions about distributed order differential equations

In this section, we give basic information and definitions about distributed order and fractional-order
differential equations. Then, information is given about stability analysis for distributed order fractional
equation systems. These are the important books and papers related to this topic [7, 8, 21, 23, 34, 37].

Definition 2.1. [34] Riemann Liouville fractional derivatives of order α is defined by

rlDα
∗ f (t) =

1
Γ(n − α)

dn

dtn

∫ t

α

f (u)
(t − u)α−n+1 du, (2.1)

where f (t) can be integrated in the [a, b] , n − 1 < α ≤ n (n ∈ N+) and Γ() is a Gamma function.

Definition 2.2. [34] As in Definition (2.1), let f (t) can be integrated in the [a, b] and n − 1 < α ≤

n (n ∈ N+) , Caputo fractional derivative is defined by

cDα
∗ f (t) =

1
Γ(n − α)

∫ t

α

f (n)(u)
(t − u)α−n+1 du. (2.2)

Definition 2.3. [34] Suppose that the function f (z)(t) is continuous in the closed range [a, t] and has
derivatives for z = 1, 2, 3, ..., n + 1. Let n be an integer and p satisfy n < p < n + 1. In this case,
Grünwald-Letnikov fractional derivative definition is given as:

glD
p
t f (t) =

n∑
k=0

f (k)(a)(t − a)−p+k

Γ(−p + k + 1)
+

1
Γ(−p + n + 1)

∫ t

a
(t − u)n−p f (n+1)(u)du, (2.3)

or

glD
p
t f (t) = lim

h→0
h−α

n∑
i=0

(−1)i

(
p
i

)
f (t − ih). (2.4)

Definition 2.4. [8] Caputo first defined an integral operator for distributed order differential equations.
This operator is defined by

Dw(α)
t f (t) =

∫ γ2

γ1

w(α)Dα
t f (t)dα, (2.5)

where α ∈ (0, 1] and
∫ 1

0
w(α) = k > 0. Additionally, Dα

t f (t) is a fractional derivative function
and it can be chosen as Riemann-Liouville, Caputo or Grünwald-Letnikov [8–10]. Another important
function w(α) is the density function of the distributed order differential equation. The reason why these
distributed equations are considered the general form of ordinary and fractional differential equations
is the importance of density function selection.
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Distributed order differential equation is defined by

N∑
i=1

αi

∫ 1

0
wi(α)Di−α

t x(t)dα +

N∑
j=0

b jx j(t) = f (t). (2.6)

Definition 2.5. [26] The approximate Grünwald-Letnikov formula for distributed order differential
equations is defined by

GLDα
t f (t) = lim

h→0
h−α

n∑
i=0

(−1)i

(
α

i

)
f (t − ih). (2.7)

By rearranging in (2.7), this formula can be expressed as:

Dα
t f (t) =

n∑
i=0

qαi f (tn−i), n = 1, 2, 3, ...,
t − α

h
, (2.8)

where qαi = (1 − 1+α
i )qαi−1, qα0 = h−α, i = 0, 1, 2, 3, ..., n and h is assumed to be very small [14, 43].

2.1. Some definitions about stability analysis

Let
du
dt

= G(u), (2.9)

where u(t) = (x1(t), x2(t), ..., xn(t))T and the function G is differentiable.
A general numerical scheme with a step size h, that approximates the solution u(tk) of the

system (2.9) can be defined in the form:

Dh(uk) = Fh(G; uk), (2.10)

where Dh(uk) ≈ ( dx1
dt ,

dx2
dt , ...,

dxn
dt )T , uk ≈ u(tk), tk = t0 + kh and Fh(G; uk) approximates the right-hand

side of system (2.9).

Definition 2.6. [13] Let E∗ an equilibrium point and J(E∗) the Jacobian of system (2.9). An
equilibrium point E∗ is called linear stable if Re(λ) < 0 for all λ ∈ σ(J(E∗)) and linear unstable if
Re(λ) > 0 for at least one λ ∈ σ(J(E∗)).

Lemma 2.7. [13] Assume that (2.10) has the following form:

uk+1 = H(uk), (2.11)

where the function H is differentiable. A fixed point E∗ is stable if and only if all eigenvalues of J(E∗)
are less than one in absolute values.

While analyzing the eigenvalues of J(E∗), we will use Schur-Cohn Test. The generalized Schur-
Cohn test can be expressed in the following form. This test is an algebraic criterion to decide whether
a discrete system is stable or not [36]. Characteristic equation can be expressed as:

P(λ) = anλ
n + an−1λ

n−1 + ... + a1λ + a0 = 0, (2.12)

where an > 0. Some of the determinants to be used are expressed as follows:
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c2,i = det
(
a0 an−i

an ai

)
, i = 0, 1, ..., n − 1,

c3,i = det
(

c2,0 c2,n−1−i

c2,n−1 c2,i

)
, i = 0, 1, ..., n − 2,

. . .

cn,i = det
(
cn−1,0 cn−1,3−i

cn−1,3 cn−1,i

)
, i = 0, 1, 2.

The Schur-Cohn test states that the equilibrium point is stable only if all the following conditions
are satisfied:

1) P(1) > 0,
2) (−1)nP(−1) > 0,
3) |a0| < an,

4) |ci,0| > |ci,n+1−i|, i = 2, 3, ..., n − 1. [36]
The conditions obtained by the Schur-Cohn test are given below.

Lemma 2.8. [36] For the quadratic equation λ2 + a1λ + a0 = 0, (a2 = 1), all roots satisfy |λi| <

1, i = 1, 2 if and only if the following three conditions are satisfied :
(i) 1 + a1 + a0 > 0,
(ii) 1 − a1 + a0 > 0,
(iii) a0 < 1.

Since the value of n for the smoking model is 5, the lemma to be used in this case is as follows:

Lemma 2.9. [36] If P(λ) = λ5 + a4λ
4 + a3λ

3 + a2λ
2 + a1λ + a0 = 0 (a5 = 1), all roots satisfy

|λi| < 1, i = 1, 2, 3, 4, 5 if and only if the following six conditions are satisfied:
(i) 1 + a4 + a3 + a2 + a1 + a0 > 0,
(ii) 1 − a4 + a3 − a2 + a1 − a0 > 0,
(iii) a0 < 1,
(iv) |c2,0| > |c2,4|,
(v) |c3,0| > |c3,3|,
(vi) |c4,0| > |c4,2|.

3. A novel distributed order smoking model and its discretization

The relationship between simple mathematical modeling and biological or physical system,
integer-order differential equations show the dynamics of systems. Integer-order differential equations
conjugate the relationship between complex system parameters in mathematical modeling and
describe the variation of structure within them, nonlinearity, and multi-scale behavior.

Fractional calculus has attracted a significant amount of attention by researchers in recent years and
different aspects of the subject have been investigated. This is because the fractional derivative is an
important tool for explaining the dynamic behavior of various physical systems. The strength of these
differential operators is their nonlocal property not found in integer- order differential operators. The
distinguishing features of fractional differential equations are that they summarize the memory and
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transmitted properties of many mathematical models. Fractional-order models are more realistic and
practical than conventional integer-order models. Arbitrary order derivatives are powerful tools for the
appreciation of the dynamic behavior of various biomaterials and systems. The most recurring feature
of these models is their global feature, which is not present in classical layout models [18].

Since the smoking model is also a model of the above-mentioned styles, it is important to better
determine the dynamics and reach more realistic values. For this reason, we have used distributed
order differential equations in this article.

In this section, the ordinary and fractional smoking model defined by Singh et al. in [40] is
generalized. This generalization is carried out by using the distributed order differential equation. The
new system for the smoking model is defined as follows:

Dw(α)
t P(t) = ρ(1 − P(t)) − µP(t)S (t),

Dw(α)
t L(t) = −ρL(t) + µP(t)S (t) − βL(t)S (t),

Dw(α)
t S (t) = −(ρ + τ1)S (t) + βL(t)S (t) + γQ(t), (3.1)

Dw(α)
t Q(t) = −(ρ + γ)Q(t) + τ1(1 − τ2)S (t),

Dw(α)
t R(t) = −ρR(t) + τ1τ2S (t).

In this system, the whole population is divided into five different subgroups. These subgroups mean
P(t): Potential smokers, L(t): Occasional smokers, S(t): Heavy smokers, Q(t): Temporary quitters and
R(t): Smokers who quit permanently. The expressions represented by the meanings of the constants
are given in Table 1.

Table 1. Definitions about smoking model systems.

µ The contact rate between L(t) and P(t)

β The contact rate between L(t) and Q(t)
γ The contact rate between Q(t) who returns back to smoking
ρ The rate of natural death
τ1 The rate of those who give up smoking
1 − τ2 The proportion of those who quit smoking temporarily (at a rate τ1)

Reproductive number : Finding boundary conditions to control the status of the population is very
important in such endemic systems. Ro value, also called basic reproduction number, is needed in these
cases. Two different situations can be expressed according to the Ro value.

i) In smoking-free equilibrium point case, if Ro < 1, which indicates that the disease will die.
ii) In smoking present equilibrium point case, if Ro > 1, it means the disease will spread.
To find the value of Ro, the Jacobian (J) matrix must be expressed in the type J = U − V . Then

matrix Z = UV−1 must be obtained. Using this matrix Z, the determinant |Z − λI| is found and the λ
value gives us the Ro value. In this smoking model, Ro =

τ1(1−τ2)γ
(ρ+τ1)(ρ+γ) [1]. For detailed information on the

importance and analysis of the Ro value in endemic models, see Shi et al. [39].
Numerical methods such as Runge-Kutta, Adams methods, and Theta methods based on finite

difference approaches are often used to study the dynamics of interacting populations. However, the
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disadvantages of these methods are that their accuracy and stability depend on the time step size. The
NSFD method guarantees a positive discrete solution for positive initial conditions. On the other
hand, the disadvantage of the structured NSFD method is that for very large step sizes, a slight delay
may occur in the traveling wave [30, 33].

In this paper, NSFD method is used for discretization. Therefore, we need to provide the necessary
information about this subject. NSFD method was introduced by Mickens’s in 1989 [27]. Mickens
shows that spurious solutions and numerical instabilities can be eliminated using this method.
Mickens’s use of the suitable denominator function played an important role in eliminating these
problems and finding numerical solutions for each time-step size. For more information,
see [26, 29, 30, 32].

The NSFD method for ordinary differential equations can be summarized as follows. We consider

dy
dt

= G(t, y, ψ), (3.2)

where ψ is a parameter. For this equation NSFD method is

t → tn = hn, G(y)→ G(yn), y(t)→ y(tn),
dy
dt
→

yn+1 − yn

Φ(h, ψ)
. (3.3)

In (3.3), Φ(h, ψ) is a denominator function and it can be chosen as: Φ(h, ψ) = 1−e−ψh

ψ
. Φ(h, ψ)

depends on the step size h and ψ is calculated from the information of fixed points of (3.2) [28]. The
NSFD method can also be applied to fractional-order differential equations with the help of Grünwald-
Letnikov discretization given in (2.8).

3.1. Discretizations and stability analysis

In this discretization, we use the NSFD method, Grünwald-Letnikov definition for distributed order
equations, and quadrature rule.

D∑
i=1

w(αi)
D

n+1∑
j=0

qαi
j Pn+1− j = ρ(1 − Pn+1) − µPn+1S n, (3.4)

D∑
i=1

w(αi)
D

n+1∑
j=0

qαi
j Ln+1− j = −ρLn+1 + µPnS n − βLn+1S n, (3.5)

D∑
i=1

w(αi)
D

n+1∑
j=0

qαi
j S n+1− j = −(ρ + τ1)S n+1 + βLnS n+1 + γQn, (3.6)

D∑
i=1

w(αi)
D

n+1∑
j=0

qαi
j Qn+1− j = −(ρ + γ)Qn+1 + τ1(1 − τ2)S n, (3.7)

D∑
i=1

w(αi)
D

n+1∑
j=0

qαi
j Rn+1− j = −ρRn+1 + τ1τ2S n, (3.8)

where qαi
0 = (Φk(h))−αi , k = 1, 2, ..., 5 and 0 < αi < 1. The denominator functions are chosen as

follows:
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Φ1(h) =
1 − e−ρh

ρ
, Φ2(h) =

1 − e−ρh

ρ
, Φ3(h) =

1 − e−(ρ+τ1)h

ρ + τ1
,

Φ4(h) =
1 − e−(ρ+γ)h

ρ + γ
, Φ5(h) =

1 − e−ρh

ρ
.

The expression
∑n+1

j=0 qαi
j Pn+1− j in (3.4) can be expressed as:

qαi
0 Pn+1 +

∑n+1
j=1 qαi

j Pn+1− j = (Φ1(h))−αi Pn+1 +
∑n+1

j=1 qαi
j Pn+1− j.

If these adjustments are replaced in (3.4), Pn+1 is obtained by

Pn+1 =
ρ −

∑D
i=1

w(αi)
D

∑n+1
j=1 qαi

j Pn+1− j

(
∑D

i=1
w(αi)

D (Φ1(h))−αi + ρ + µS n)
. (3.9)

If the same procedure is applied for (3.5)–(3.8) respectively, the discretized forms are obtained as
follows:

Ln+1 =
µPnS n −

∑D
i=1

w(αi)
D

∑n+1
j=1 qαi

j Ln+1− j

(
∑D

i=1
w(αi)

D (Φ2(h))−αi + ρ + βS n)
, (3.10)

S n+1 =
γQn −

∑D
i=1

w(αi)
D

∑n+1
j=1 qαi

j S n+1− j

(
∑D

i=1
w(αi)

D (Φ3(h))−αi + ρ + τ1 − βLn)
, (3.11)

Qn+1 =
τ1(1 − τ2)S n −

∑D
i=1

w(αi)
D

∑n+1
j=1 qαi

j Qn+1− j

(
∑D

i=1
w(αi)

D (Φ4(h))−αi + ρ + γ)
, (3.12)

Rn+1 =
τ2τ1S n −

∑D
i=1

w(αi)
D

∑n+1
j=1 qαi

j Rn+1− j

(
∑D

i=1
w(αi)

D (Φ5(h))−αi + ρ)
. (3.13)

This discrete form is expressed as system (3.14) for
∑D

i=1
w(αi)

D = K and
∑D

i=1
w(αi)

D (Φ j(h))−αi = Z j, j =

1, ..., 5.

Pn+1 =
ρ − K(qαi

1 Pn +
∑n+1

j=2 qαi
j Pn+1− j)

((Z1)−αi + ρ + µS n)
,

Ln+1 =
µPnS n − K(qαi

1 Ln +
∑n+1

j=2 qαi
j Ln+1− j)

((Z2)−αi + ρ + βS n)
,

S n+1 =
γQn − K(qαi

1 S n +
∑n+1

j=2 qαi
j S n+1− j)

((Z3)−αi + ρ + τ1 − βLn)
, (3.14)

Qn+1 =
τ1(1 − τ2)S n − K(qαi

1 Qn +
∑n+1

j=2 qαi
j Qn+1− j)

((Z4)−αi + ρ + γ)
,

Rn+1 =
τ2τ1S n − K(qαi

1 Rn +
∑n+1

j=2 qαi
j Rn+1− j)

((Z5)−αi + ρ)
.
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It is necessary to prove that all variables are not negative and τ2 < 1 for system (3.14). Because in
this case, the solutions of the system with positive initial conditions are positive for all n > 0.

Remark 3.1. If Pn > 0, Ln > 0, S n > 0, Qn > 0, Rn > 0 all variables are not negative (τ2 < 1) and
all the following conditions are satisfy, the solutions Pn+1, Ln+1, S n+1, Qn+1 and Rn+1 of system (3.14)
are positive for all n > 0.
i) ρ > K(qαi

1 Pn +
∑n+1

j=2 qαi
j Pn+1− j),

ii) µPnS n > K(qαi
1 Ln +

∑n+1
j=2 qαi

j Ln+1− j),
iii) If ((Z3)−αi + ρ + τ1 > βLn), γQn > K(qαi

1 S n +
∑n+1

j=2 qαi
j S n+1− j) or

If ((Z3)−αi + ρ + τ1 < βLn), γQn < K(qαi
1 S n +

∑n+1
j=2 qαi

j S n+1− j),
iv) τ1(1 − τ2)S n > K(qαi

1 Qn +
∑n+1

j=2 qαi
j Qn+1− j),

v) τ2τ1S n > K(qαi
1 Rn +

∑n+1
j=2 qαi

j Rn+1− j).

Now, the Jacobian (J) matrix is required for the stability of this equilibrium point. So, the Jacobian
matrix of system (3.14) is found as:

J(P, L, S ,Q,R)5×5 =


j11 0 j13 0 0
j21 j22 j23 0 0
0 j32 j33 j34 0
0 0 j43 j44 0
0 0 j53 0 j55


(3.15)

where,

j11 =
−K(qαi

1 )
((Z1)−αi + ρ + µS n)

, j13 = −µ
ρ − K(qαi

1 Pn +
∑n+1

j=2 qαi
j Pn+1− j)

((Z1)−αi + ρ + µS n)2 ,

j21 =
µS n

((Z2)−αi + ρ + βS n)
, j22 =

−K(qαi
1 )

((Z2)−αi + ρ + βS n)
,

j23 =
µPn

((Z2)−αi + ρ + βS n)
− β

µPnS n − K(qαi
1 Ln +

∑n+1
j=2 qαi

j Ln+1− j)

((Z2)−αi + ρ + βS n)2 ,

j32 = β
γQn − K(qαi

1 S n +
∑n+1

j=2 qαi
j S n+1− j)

((Z3)−αi + ρ + τ1 − βLn)2 , j33 =
−K(qαi

1 )
((Z3)−αi + ρ + τ1 − βLn)

,

j34 =
γ

((Z3)−αi + ρ + τ1 − βLn)
, j43 =

τ1(1 − τ2)
((Z4)−αi + ρ + γ)

, j44 =
−K(qαi

1 )
((Z4)−αi + ρ + γ)

,

j53 =
τ2τ1

((Z5)−αi + ρ)
, j55 =

−K(qαi
1 )

((Z5)−αi + ρ)
.

Theorem 3.2. There are 2 types of equilibrium points for the smoking model (3.14), let’s take mi =

((Zi)−αi + ρ + K
∑n+1

j=1 qαi
j ) for i = 1, 2, ..., 5,

i) If S = 0, smoking free equilibrium point E = ( ρ

m1
, 0, 0, 0, 0).

ii) If S , 0, system (3.14) has positive smoking present equilibrium point E∗ = (P∗, L∗, S ∗,Q∗,R∗),

where P∗ =
ρ

(m1+µS ∗) , L∗ =
µ( ρ

(m1+µS ∗) )S ∗

(m2+βS ∗) , Q∗ =
τ1(1−τ2)S ∗

(m4+γ) , R∗ = τ2τ1S ∗

m5
, and S ∗ is a positive solution of
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(3.16),

S ∗ =
γ( τ1(1−τ2)S ∗

(m4+γ) ) − S ∗K
∑n+1

j=1 qαi
j )

((Z3)−αi + ρ + τ1 − β
µ( ρ

(m1+µS ∗) )S ∗

(m2+βS ∗) )
. (3.16)

Proof. In order to find the equilibrium point of (3.14), the following statements should be provided.

ρ − K(
∑n+1

j=1 qαi
j Pn)

((Z1)−αi + ρ + µS n)
= Pn, (3.17)

µPnS n − K(
∑n+1

j=1 qαi
j Ln)

((Z2)−αi + ρ + βS n)
= Ln, (3.18)

γQn − K(
∑n+1

j=1 qαi
j S n)

((Z3)−αi + ρ + τ1 − βLn)
= S n, (3.19)

τ1(1 − τ2)S n − K(
∑n+1

j=1 qαi
j Qn)

((Z4)−αi + ρ + γ)
= Qn, (3.20)

τ2τ1S n − K(
∑n+1

j=1 qαi
j Rn)

((Z5)−αi + ρ)
= Rn. (3.21)

Using (3.17) and mi = ((Zi)−αi + ρ + K
∑n+1

j=1 qαi
j ) for i = 1, 2, ..., 5, we obtain P =

ρ

(m1+µS ) . Using the

help of this expression and (3.18), we can find L =
µ( ρ

(m1+µS ) )S

(m2+βS ) . Likewise, if Q and R expressions are left
alone in (3.20) and (3.21), Q =

τ1(1−τ2)S
(m4+γ) and R = τ2τ1S

(m5) are found.
i) If we choose S = 0 in (3.17)–(3.21) , we can find E = ( ρ

m1
, 0, 0, 0, 0) equilibrium point.

ii) If S , 0, by substituting the found expressions in (3.19),

S ∗ =
γ( τ1(1−τ2)S ∗

(m4+γ) )−S ∗K
∑n+1

j=1 qαi
j )

((Z3)−αi +ρ+τ1−β
µ( ρ

(m1+µS ∗) )S ∗

(m2+βS ∗) )
.

With this equation, the solution of S ∗ can be obtained. Thus the equilibrium point for this situation can
be expressed as:

E∗ = ( ρ

(m1+µS ∗) ,
µ( ρ

(m1+µS ∗) )S ∗

(m2+βS ∗) , S ∗, τ1(1−τ2)S ∗

(m4+γ) , τ2τ1S ∗

m5
).

�

Theorem 3.3. The smoking free equilibrium point E = ( ρ

m1
, 0, 0, 0, 0) is locally asymptotically stable

if Ro < 1 and the following conditions are satisfied, if not unstable.
i) | − K(qαi

1 )| < |((Z1)−αi + ρ)|
ii) | − K(qαi

1 )| < |((Z2)−αi + ρ)|
iii) | − K(qαi

1 )| < |((Z5)−αi + ρ)|

iv) | − a1 +

√
a2

1 − 4a1a0| < 2

v) | − a1 −

√
a2

1 − 4a1a0| < 2

AIMS Mathematics Volume 7, Issue 3, 4636–4654.



4646

where

a1 = qαi
1 K

(2ρ + τ1 + γ + (Z4)−αi + (Z3)−αi)
(ρ(ρ + τ1 + (Z3)−αi) + (γ + (Z4)−αi)(ρ + τ1 + (Z3)−αi))

,

a0 =
(qαi

1 K)2 + τ1γ(1 − τ2)
(ρ(ρ + τ1 + (Z3)−αi) + (γ + (Z4)−αi)(ρ + τ1 + (Z3)−αi))

.

Proof. The Jacobian matrix is:

J(E) =



−K(qαi
1 )

((Z1)−αi +ρ) 0 −µ
ρ−K(qαi

1 )( ρ
m1

)

((Z1)−αi +ρ)2 0 0

0 −K(qαi
1 )

((Z2)−αi +ρ)

µ( ρ
m1

)

((Z2)−αi +ρ) 0 0

0 0 −K(qαi
1 )

((Z3)−αi +ρ+τ1)
γ

((Z3)−αi +ρ+τ1) 0

0 0 τ1(1−τ2)
((Z4)−αi +ρ+γ)

−K(qαi
1 )

((Z4)−αi +ρ+γ) 0

0 0 τ2τ1
((Z5)−αi +ρ) 0 −K(qαi

1 )
((Z5)−αi +ρ)


. (3.22)

�

With the help of this matrix, characteristic equation calculated as:

(λ +
K(qαi

1 )
((Z1)−αi + ρ)

)(λ +
K(qαi

1 )
((Z2)−αi + ρ)

)(λ +
K(qαi

1 )
((Z5)−αi + ρ)

)(λ2 + a1λ + a0) = 0.

The eigenvalues of J(E) are λ1 =
−K(qαi

1 )
((Z1)−αi +ρ) , λ2 =

−K(qαi
1 )

((Z2)−αi +ρ) , λ3 =
−K(qαi

1 )
((Z5)−αi +ρ) , λ4 =

−a1+
√

a2
1−4a1a0

2 and

λ5 =
−a1−
√

a2
1−4a1a0

2 . We know that E is stable for all eigenvalues are less than one in absolute values
with Lemma (2.7). So if (i)− (v) conditions are satisfied, the equilibrium point will be stable. And also,
if Ro < 1 that means τ1(1 − τ2)γ > (ρ + τ1)(ρ + γ), a2

1 − 4a1a0 is less than 0. So, λ4 and λ5 expressions
are obtained as complex roots.

Therefore, if Ro < 1, E is locally asymptotically stable because all eigenvalues have negative real
parts.

Remark 3.4. The stability of the equilibrium point E∗ involves quite complex operations. Therefore,
the stability of the E∗ point has been investigated in the numerical analysis section with the Schur-Cohn
test.

4. Numerical simulations

In this section, we have given some numerical simulations. These simulations were obtained by
the NSFD method. All initial conditions and parameters are listed in Table 2 [40]. It is seen that the
conditions given by Remark (3.1) are satisfy with Table 2 values, so the results of (3.14) give positive
solutions. These positive results are shown in Figures 1–6.

i) Analysis of E equilibrium point : With the help of the values given in Table 2, w(α) = α−0.4
and h = 0.4, firstly we calculate reproductive number

Ro = 0.431024 < 1.
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The eigenvalues are obtained as:

λ1 = −0.00002377, λ2 = −0.0000019, λ3 = −0.00002377,

λ4 = −0.0000039 + 0.1414i, λ5 = −0.0000039 − 0.1414i.

From Lemma (2.8), we get a1 = 0.0000078 and a0 = 0.02. We show that
i) 1 + a0 + a1 = 1.0200078 > 0,
ii) 1 + a0 − a1 = 1.0199922 > 0,
iii) a0 = 0.02 < 1,
where |λi| < 1, i = 1, 2, 3, 4, 5. So, E equilibrium point is asymptotically stable as all the conditions

in Lemma (2.8) are satisfied.
ii) Analysis of E∗ equilibrium point : With the same procedure of analysis of E∗, reproductive

number calculated is
Ro = 0.431024 < 1.

Using Lemma (2.9),
i) 1 + a0 + a1 + a2 + a3 + a4 = 10.8305 > 0,
ii) 1 − a0 + a1 − a2 + a3 − a4 = 7.0784 > 0,
iii) a0 = 0.0002 < 1,
iv) |c2,0| = 1.0000 > |c2,4| = 0.1698,
v) |c3,0| = 1.0180 < |c3,3| = 6.0244,
vi) |c4,0| = 36.9762 > |c4,2| = 11.3052.
As you can see, Lemma (2.9) doesn’t satisfy because of the condition (v). So according to the

Schur-Cohn test, E∗ is unstable.

Table 2. Initial conditions and parameters.

P(0): 0.60301 µ : 0.23

L(0): 0.23 β : 0.3
S(0): 0.10628 γ : 0.25
Q(0): 0.0326 ρ : 0.04
R(0): 0.01811 τ1 : 0.2

τ2 : 0.4

In Figures 1–5, graphics of all the definitions in the smoking model are given (α = 1, h = 0.01). We
can observe that the number of potential smokers increases over time and the number of occasional,
heavy, temporary smokers, and permanent quitters decreases over time. In here, the value of w(α) was
taken as w1 = 1, w2 = α + 0.3, w3 = α − 0.4, w4 = 2α − 0.75 and w5 = α + 0.85. We see the results
are consistent when the graphs were compared by Singh et al. [40] for w(α) = 1. Thus, it was seen
that we can interpret the selection of the density function in this way about the fractional-order state of
the equation with the help of the distributed order equation. Although w(α) has different options, we
see the solutions got by the NSFD method approach the correct endemic equilibrium point. We have
found a general solution, including the fractional type solution obtained in Singh et al. [40]. For this
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reason, we can understand the dynamics of diseases that may occur in the face of different external
factors with the solutions obtained.

Finally, we show some phase portraits of the equilibrium point E in Figure 6. We can measure
biologically the behavior of all subgroups with the selection of the density function when all graphs
are considered. Thus, we can predict the behavior of populations belonging to the model under variable
conditions. According to these predictions, we can take precautions against various diseases.

w1
w2
w3
w4
w5

 

0.6

0.7

0.8

0.9

1

P(t)

0 2 4 6 8 10 12
t

Figure 1. The numerical simulations of P(t) for different w(α) values.
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w4
w5
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2 4 6 8 10 12
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Figure 2. The numerical simulations of L(t) for different w(α) values.
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Figure 3. The numerical simulations of S (t) for different w(α) values.
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Figure 4. The numerical simulations of Q(t) for different w(α) values.
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Figure 5. The numerical simulations of R(t) for different w(α) values.
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Figure 6. Phase portraits for w(α) = α − 0.4, α = 1 and h = 0.4.

In Table 3, we present the effect of time step size on the Runge-Kutta method, Theta method, and
NSFD method. Here, we see that the NSFD discretization is more effective than the classical method
for bigger step-size. In Table 4, we compare CPU times for three numerical methods. We can say
that the numerical methods evaluated among themselves have not been extremely different. Here, we
carried out numerical calculations using MATLAB to illustrate the dynamics of the system. Because
of this study and simulations, we have seen that the use of distributed order differential equations is
quite suitable for this model. Because the selection of the density function provided a fast and accurate
interpretation for different situations.

Table 3. Qualitative results for different time step sizes h in Smoking model with w(α) = α

and α = 1.

h Theta Method (θ = 0.6) Runge Kutta (4th order) NSFD

0.0001 Convergence Convergence Convergence
0.001 Convergence Convergence Convergence
0.02 Convergence Convergence Convergence
0.3 Convergence Convergence Convergence
0.5 Convergence Convergence Convergence
1 Convergence Convergence Convergence
2 Divergence Divergence Convergence
5 Divergence Divergence Convergence
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Table 4. CPU Times (seconds) for w(α) = α and h = 0.001.

α Theta Method (θ = 0.6) Runge Kutta (4th order) NSFD

0.1 0.6413 1.1215 0.6218
0.7 0.6825 1.0596 0.5914
1 0.7123 0.9592 0.5748
1.3 0.8514 0.9334 0.5312

5. Conclusions

In this paper, we have established a distributed order differential equation system for the smoking
model. We have used the NSFD method and approximate Grünwald-Letnikov formula for the
numerical solution of this model. Then, we have expressed the graphics of the solutions. We also
analyzed the equilibrium points with the help of graphics and lemmas. We can see from the graphics
that the interpretation capability is quite easy thanks to the different options of the density function.
As can be understood from these data, the findings cover all the literature studies on this subject.
Because of the density function, we can transform the distributed order differential equations into
other equations. Since time is very important in such an important health problem, it is vital to use the
solutions found, as they give the characteristics of the populations even in different situations. For
these reasons, the use of distributed order differential equations is very convenient both in this model
and in most models that cause such health problems.
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