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Abstract. A new concept of dynamical system of predator-prey model is pre-
sented in this paper. The model takes into account the memory of interaction

between the prey and predator due to the inclusion of fractional differentia-

tion. In addition, the model takes into account the inherent disposition of a
prey or predator toward hunting or defending in time. Analysis of existence

and uniqueness of the solutions is presented. A numerical method is used to

generate some simulations as the fractional orders change from one to zero. A
new traveling waves patterns are obtained.

1. Introduction. The main aim of modelling is to describe a physical problem
using mathematical equations and give a better prediction. Mathematical models
are employed in almost all branches of science natural sciences including chemistry,
physics, biochemistry, biology, earth science and meteorology. Also these tools are
also utilised in engineering disciplines including artificial intelligence and computer
science. In addition, social sciences subjects such as political science, sociology, eco-
nomics and psychology do use mathematical tools most extremely. Noting that the
primary purpose of these exercises to help explain a system and to investigate the
effects of different components, and have a more accurate predictions about the be-
haviour of the given physical problem under investigation. In general these models
can takes several forms for instance statistical models, differential equations, game
theory and dynamical system. In this work we are interesting in mathematical mod-
els describing the dynamical system of prey-predators models . We shall recall that
within a given bionetwork, predation is a natural interface where a hunter feeds on
it’s pray. The model has attracted many scholars within the field of mathematical
biology and other fields of applied mathematics. The first model was constructed
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in the theory of autocatalytic chemical reactions in 1910 by Alfred J. Lotka [11].
Then the well-known logistic equation was suggested by Pierre François Verhulst
[12]. Many other researchers have modified these models to better obtained a real
behaviour of the physical system [13], [14], [10], [4], [1], [8], [9] . However, their
models do not take into account the space component, the nonlocality of the inter-
action between prey and predators, their model memory effect of the interaction,
for example a new behaviour of a prey that survive the attack of the particular
predator. The famous mathematical model constructed to describe this dynamical
system is given as

du(t)

dt
= − χu(t)v(t)

1 + χhu(t)
+ ru(t)

(
1− u(t)

k

)
, (1)

dv(t)

dt
=

βu(t)v(t)

1 + χhu(t)
− dv(t).

Here u(t) and v(t) are the densities of predators and prey respectively.
Model (1) was recently modified to:

∂u(x, t)

∂t
+ (1− ρ1)v1∂xu(x, t) = −χu(x, t)v(x, t)

1 + χhu(x, t)
+ ru(x, t)

(
1− u(x, t)

k

)
, (2)

∂v(x, t)

∂t
+ (1− ρ2)v2∂xu(x, t) =

βu(x, t)v(x, t)

1 + χhu(x, t)
− dv(x, t).

Where v1, v2 average velocity of predator and prey respectively are, ρ1, ρ2 are
suggested to be the factor of reduction of run due to diseases, age and starvation.

The above model equation (2) is more complex than the original version however
does accurately replicate the physical problem, for the following reasons: The veloc-
ity of a prey or predator is function of time and space, the nonlocality is not taking
into account here, the model does not takes into account the inherent disposition of
a prey or predator toward hunting or defending in time. The memory of previous
interaction is not considered, therefore a new model is needed.

2. Motivation. In broad-spectrum, model involvedness encompasses an inter-
change between simplicity and accuracy of the model. An idea was suggested in
modelling known as Occam’s razor with the standard predominantly applicable to
modelling, the main ideology being that among models with approximately equal
prediction power, only the simplest one can be considered. Although added in-
volvedness habitually enhances the levelheadedness of a model, nevertheless it can
make the model problematic to understand and analyse, this can lead to compu-
tational problems, including numerical instability. Some well-known scientist like
Thomas Kuhn who debates that as science advances, clarifications have a tendency
to become multifaceted beforehand paradigm shift offers fundamental simplifica-
tion. For instance when modelling the dynamic interaction between predator and
prey, we could implant each natural behaviour of predator or prey into our model
and would thus acquire an almost white-box model of the dynamical system. Never-
theless the mathematical analysis of such model would effectively inhibit the usage
of such model. Adding to this, the uncertainty would increase the efficiency of the
model and one could obtain a better prediction. It is important to note that, the
advance of technology nowadays could help analysis more complicated models.
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3. Atangana-Baleanu derivative in Caputo sense. In this section, we present
the definitions of the new fractional derivative with no singular and nonlocal kernel
[5], [6], [3], [2], [7] .

Definition 1. Let f ∈ H1(a, b), b > a, α ∈ [0, 1] then, the definition of the new
fractional derivative (Atangana-Baleanu derivative in Caputo sense)is given as:

ABC
a Dα

t (f (t)) =
B(α)

1− α

t∫
a

f
′
(x)Eα

[
−α (t− x)

α

1− α

]
dx. (3)

Of course B has the same properties as in Caputo and Fabrizio case . The above
definition will be helpful to real world problem and also will have great advantage
when using Laplace transform to solve some physical problem with initial condition.

Definition 2. Let f ∈ H1(a, b), b > a, α ∈ [0, 1] and not necessary differentiable
then, the definition of the new fractional derivative (Atangana-Baleanu fractional
derivative in Riemann-Liouville sense) is given as:

ABR
a Dα

t (f (t)) =
B(α)

1− α
d

dt

t∫
a

f(x)Eα

[
−α (t− x)

α

1− α

]
dx. (4)

Definition 3. The fractional integral associate to the new fractional derivative
with non-local kernel is defined as:

AB
a Iαt {f(t)} =

1− α
B(α)

f(t) +
α

B(α)Γ(α)

t∫
a

f(y)(t− y)α−1dy. (5)

When alpha is zero we recover the initial function and if also alpha is 1, we obtain
the ordinary integral.

4. New extended model with Atangana-Balenau derivative in Caputo
sense. Our new extended model is given by (6) with nonlocal and nonsingular
derivative of ABC.

ABC
0 Dα

t u(x, t) + (1− ρ1)v1(x, t)∂xu(x, t) + ρ1φ1∂tu(x, t) (6)

= −χu(x, t)v(x, t)

1 + χhu(x, t)
+ ru(x, t)

(
1− u(x, t)

k

)
,

ABC
0 Dµ

t v(x, t) + (1− ρ2)v2(x, t)∂xu(x, t) + ρ2φ2∂tv(x, t)

=
βu(x, t)v(x, t)

1 + χhu(x, t)
− dv(x, t).

Therefore the additional terms ρ1φ1∂tu(x, t) and ρ2φ2∂tv(x, t) contribute to the
natural deposition of a given set of preys and predators as the prey can develop
natural ability to defend themselves and also the predator can enhance the skill of
hunting. The inclusion of fractional differentiation helps to account for the non-
locality of the dynamical system. We also suggest that, the speeds of prey and
predator depend on time and space.
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5. Existence and uniqueness of solutions. In this section, we will research of
existence and uniqueness of solutions. Also positive solution will be discussed. Let
we consider X = C[a, b] the Banach space of every continuous real functions defined
in the closed set [a, b], which contain the sub norm and Z be the shaft defined as:
Z = {u, v ∈ X, u(x, t) ≥ 0 and v(x, t) ≥ 0, a ≤ t ≤ b}. Now we present the following
Banach fixed-point theorem that will be used for the existence of solutions .

Definition 4. Let E be a real Banach space with a cone H. H initiates a restricted
order ≤ in E in the succeeding approach [15]

x ≤ y ⇒ y − x ∈ H.

For every x, y ∈ E the order interval is defined as 〈a, b〉 = {f ∈ E : a ≤ f ≤ b} . A
cone K is denoted normal, if one can find a positive constant j such that h, d ∈ K,
Φ < h < d⇒ ‖h‖ ≤ j ‖d‖, where Φ denotes the zero element of K.

Theorem 1 [15]. Let H be a closed set subspace of a Banach space of D. Let
G be a contraction mapping with Lipschitz constant g < 1 from H to H. Thus G
possesses a fixed-point t∗ in H. In addition, if t0 is a random point in H and {tn}
is a sequence defined by tn+1 = Gtn (n = 0, 1, 2 . . .), then for a large number n, tn
tends to t∗ in H and d(tn, t

∗) ≤ gn

(1−g)d(t1, t0).

In the rest of section we will consider new model with ABC derivative as below:

ABC
0 Dα

t u(x, t) = −χu(x, t)v(x, t)

1 + χhu(x, t)
+ ru(x, t)

(
1− u(x, t)

k

)
(7)

−(1− ρ1)v1(x, t)∂xu(x, t)− ρ1φ1∂tu(x, t),

ABC
0 Dµ

t v(x, t) =
βu(x, t)v(x, t)

1 + χhu(x, t)
− dv(x, t)

−(1− ρ2)v2(x, t)∂xu(x, t)− ρ2φ2∂tv(x, t).

Now applying the AB fractional integral on equation (7), we obtain the followings;

u(x, t)− u(x, 0) =
1− α
AB(α)

{
−χu(x,t)v(x,t)

1+χhu(x,t) + ru(x, t)
(

1− u(x,t)
k

)
−(1− ρ1)v1(x, t)∂xu(x, t)− ρ1φ1∂tu(x, t)

}
(8)

+
α

B(α)Γ(α)

t∫
0

(t− τ)α−1

.

{
−χu(x,τ)v(x,τ)

1+χhu(x,τ) + ru(x, τ)
(

1− u(x,τ)
k

)
−(1− ρ1)v1(x, τ)∂xu(x, τ)− ρ1φ1∂tu(x, τ)

}
dτ,

v(x, t)− v(x, 0) =
1− µ
AB(µ)

{
βu(x,t)v(x,t)
1+χhu(x,t) − dv(x, t)

−(1− ρ2)v2(x, t)∂xu(x, t)− ρ2φ2∂tv(x, t)

}
(9)

+
µ

B(µ)Γ(µ)

t∫
0

(t− τ)µ−1

.

{
βu(x,τ)v(x,τ)
1+χhu(x,τ) − dv(x, τ)

−(1− ρ2)v2(x, τ)∂xu(x, τ)− ρ2φ2∂tv(x, τ)

}
dτ.
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Then we will use (8)-(9) to show existence of equation (7). Necessary lemmas for
existence of solutions given with lemma 1 and lemma 2 below.

Lemma 1. The mapping G : H → H defined as

Gu(x, t) =
1− α
AB(α)

s(x, t, u(x, t)) (10)

+
α

AB(α)Γ(α)

t∫
0

(t− τ)α−1s(x, τ , u(x, τ))dτ

and

Gv(x, t) =
1− µ
AB(µ)

s(x, t, v(x, t))

+
µ

AB(µ)Γ(µ)

t∫
0

(t− τ)µ−1s(x, τ , v(x, τ))dτ.

For simplicity we use

s(x, t, u(x, t)) =

{
−χu(x,t)v(x,t)

1+χhu(x,t) + ru(x, t)
(

1− u(x,t)
k

)
−(1− ρ1)v1(x, t)∂xu(x, t)− ρ1φ1∂tu(x, t)

}
and

s(x, t, v(x, t)) =

{
βu(x,t)v(x,t)
1+χhu(x,t) − dv(x, t)

−(1− ρ2)v2(x, t)∂xu(x, t)− ρ2φ2∂tv(x, t)

}
.

Lemma 2. Let M ⊂ H be bounded implying, we can find p, r > 0 for system such
that,

‖u(x, t2)− u(x, t1)‖ ≤ p ‖t2 − t1‖ , (11)

‖v(x, t2)− v(x, t1)‖ ≤ r ‖t2 − t1‖ , ∀u, v ∈M.

Then G(M) is compact.

Proof. Let P = max
{

1−α
AB(α) + s(x, t, u(x, t))

}
, 0 ≤ u(x, t) ≤ K. For u(x, t) ∈ M

then we have the following.

‖Gu(x, t)‖ =
1− α
AB(α)

‖s(x, t, u(x, t))‖ (12)

+
α

AB(α)Γ(α)

t∫
0

(t− τ)α−1 ‖s(x, τ , u(x, τ))‖ dτ

≤ 1− α
AB(α)

.P +
α

AB(α)Γ(α)
.P
tα

α

≤ 1− α
AB(α)

.P +
αtαP

AB(α)Γ(α+ 1)
.

And similary let we consider second equation, If R = max
{

1−µ
AB(µ) + s(x, t, v(x, t))

}
,

0 ≤ v(x, t) ≤ L. For v(x, t) ∈M then we have the following.

‖Gv(x, t)‖ ≤ 1− µ
AB(µ)

‖s(x, t, v(x, t))‖ (13)
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+
µ

AB(µ)Γ(µ)

t∫
0

(t− τ)µ−1 ‖s(x, τ , v(x, τ))‖ dτ

≤ 1− µ
AB(µ)

.R+
µRtµ

AB(µ)Γ(µ+ 1)
.

So (12)-(13) implies the function G is bounded. On the rest of section, we will
consider u(x, t) ∈M, t1, t2 and t1 < t2, then for a given ε > 0, if |t2 − t1| < δ. Then,

‖Gu(x, t2)−Gu(x, t1)‖ ≤ 1− α
AB(α)

‖s(x, t2, u(x, t2))− s(x, t1, u(x, t1))‖ (14)

+

∥∥∥∥∥∥∥∥
α

AB(α)Γ(α)

t2∫
0

(t2 − τ)α−1 ‖s(x, τ , u(x, τ))‖ dτ

− α
AB(α)Γ(α)

t1∫
0

(t1 − τ)α−1 ‖s(x, τ , u(x, τ))‖ dτ

∥∥∥∥∥∥∥∥
≤ 1− α

AB(α)
‖s(x, t2, u(x, t2))− s(x, t1, u(x, t1))‖

+
αK

AB(α)Γ(α)


t2∫

0

(t2 − y)α−1dy −
t1∫

0

(t1 − y)α−1dy

 .

We first start with the integral part.

t2∫
0

(t2 − y)α−1dy −
t1∫

0

(t1 − y)α−1dy (15)

=

t1∫
0

{
(t1 − y)α−1 − (t2 − y)α−1

}
dy +

t2∫
t1

(t2 − y)α−1dy

= 2
(t2 − t1)

α

α

Now we investigate the following;

‖s(x, t2, u(x, t2))− s(x, t1, u(x, t1))‖ (16)

=

∥∥∥∥∥∥∥∥∥
u(x, t2)

[
− χv(x,t2)

1+χhu(x,t2)

]
− u(x, t1)

[
− χv(x,t1)

1+χhu(x,t1)

]
+ r
k (u(x, t2)− u(x, t1)) [1− u(x, t2)− u(x, t1)]

+(ρ1 − 1) [v1(x, t2)∂xu(x, t2)− v1(x, t1)∂xu(x, t1)]
−ρ1φ1 [∂tu(x, t2)− ∂tu(x, t1)]

∥∥∥∥∥∥∥∥∥ .
Since solutions are bounded, we can find different positive constants, A,B,C,D,

such that for all t. Also, with
[
− χv(x,t2)

1+χhu(x,t2)

]
< 1 and

[
− χv(x,t1)

1+χhu(x,t1)

]
are satisfied

and using Lipchitz condition of the derivative , the above (16) can be rewritten as
below.

‖s(x, t2, u(x, t2))− s(x, t1, u(x, t1))‖ (17)

≤ ‖u(x, t2)− u(x, t1)‖A+
r

k
B ‖u(x, t2)− u(x, t1)‖

+(ρ1 − 1)C ‖u(x, t2)− u(x, t1)‖ − ρ1φ1D ‖u(x, t2)− u(x, t1)‖
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≤
{
A+

r

k
B + (ρ1 − 1)C − ρ1φ1D

}
︸ ︷︷ ︸

y

‖u(x, t2)− u(x, t1)‖

≤ y.p ‖t2 − t1‖
≤ F ‖t2 − t1‖ .

Now putting (17)-(15) in (14) we obtain:

‖Gu(x, t2)−Gu(x, t1)‖ ≤ 1− α
AB(α)

F ‖t2 − t1‖+
αK

AB(α)Γ(α)
2
‖t2 − t1‖

α

α

(18)

≤ 1− α
AB(α)

F ‖t2 − t1‖+
2αK

AB(α)Γ(α+ 1)
‖t2 − t1‖α ,

δ =
ε

1−α
AB(α)F + 2αK

AB(α)Γ(α+1)

. (19)

Such that ‖Gu(x, t2)−Gu(x, t1)‖ ≤ ε is satisfied.
If we apply similar steps to second equation we can obatin as below:

‖Gv(x, t2)−Gv(x, t1)‖ ≤ 1− µ
AB(µ)

Q ‖t2 − t1‖+
2µL

AB(µ)Γ(µ+ 1)
‖t2 − t1‖α . (20)

For each ε > 0, we can find

δ =
ε

1−µ
AB(µ)Q+ 2µL

AB(µ)Γ(µ+1)

. (21)

So ‖Gv(x, t2)−Gv(x, t1)‖ ≤ ε. Henceforth G(M) is equi-continuous and from the

meaning of Arzela-Ascoli theorem, G(M) is compact.

Theorem 2. S : [a, b] × [0,∞) → [0,∞) be a continuous function and S(x, t, .)
increasing for each t in [a, b]. Let us assume that one can find m,n satisfying
K(D)m ≤ S(x, t,m), K(D)n ≥ S(x, t, n), 0 ≤ m(x, t) ≤ n(x, t), a ≤ t ≤ b. Then
our new equation has a positive solution.
Proof. The fixed-point of the operator G is needed to be considered. With frame-
work of lemma 1, the considered operator G : H → H is completely continuous.
Let us choose two arbitrary densities of population of predator in the u1 and u2 in
H satisfying u1 ≤ u2 and also densities of population of prey in the v1 and v2 in H
satisfying v1 ≤ v2 then, by assuming that S is a positive function, then followings
are satified

Gu1(x, t) ≤ 1− α
AB(α)

‖s(x, t, u1(x, t))‖ (22)

+
α

AB(α)Γ(α)

t∫
0

(t− τ)α−1 ‖s(x, τ , u1(x, τ))‖ dτ

≤ Gu2(x, t)

and

‖Gv1(x, t)‖ ≤ 1− µ
AB(µ)

‖s(x, t, v1(x, t))‖ (23)

+
µ

AB(µ)Γ(µ)

t∫
0

(t− τ)µ−1 ‖s(x, τ , v1(x, τ))‖ dτ

≤ Gv2(x, t).
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Henceforth the mapping G is increasing. By the conjecture, we get Gn ≥ n, Gm ≤
m. So the operator G : 〈m,n〉 → 〈m,n〉 is compact within the framework of lemma
2 and continuous in view of lemma 1. Since H is a normal cone of G.

5.1. Uniqueness of solution. In this section, we will investigate the uniqueness
of solutions. To succes this, let we consider equations like below:

‖Gu1(x, t)−Gu2(x, t)‖ (24)

≤

∥∥∥∥∥∥
1−α
AB(α) (s(x, t, u1(x, t))− s(x, t, u2(x, t)))

α
AB(α)Γ(α)

t∫
0

(t− τ)α−1 (s(x, τ , u1(x, τ))− s(x, τ , u2(x, τ))) dτ

∥∥∥∥∥∥
≤ 1− α

AB(α)
‖s(x, t, u1(x, t))− s(x, t, u2(x, t))‖

+
α

AB(α)Γ(α)

t∫
0

(t− τ)α−1 ‖s(x, τ , u1(x, τ))− s(x, τ , u2(x, τ))‖ dτ

≤ 1− α
AB(α)

y ‖u1(x, t)− u2(x, t)‖

+
α

AB(α)Γ(α)
y

t∫
0

(t− τ)α−1 ‖u1(x, τ)− u2(x, τ)‖ dτ,

‖Gu1(x, t)−Gu2(x, t)‖ (25)

≤
{

1− α
AB(α)

y +
αybα

AB(α)Γ(α+ 1)

}
‖u1(x, t)− u2(x, t)‖ .

And similary,

‖Gv1(x, t)−Gv2(x, t)‖ (26)

≤
{

1− µ
AB(µ)

z +
µzbµ

AB(µ)Γ(µ+ 1)

}
‖v1(x, t)− v2(x, t)‖ .

Therefore if the following conditions holds{
1− α
AB(α)

y +
αybα

AB(α)Γ(α+ 1)

}
< 1 (27)

and {
1− µ
AB(µ)

z +
µzbµ

AB(µ)Γ(µ+ 1)

}
< 1, (28)

then mapping G is a contraction, which implies fixed point, thus the new model has
a unique positive solution.

6. New numerical approximation of fractional integral. In the done by
Atangana and Dumitru , it was revealed that partial differential equations based on
the ABC derivative can be equivalently converted to fractional integral equations.
However the AB fractional integral is based on the Riemann-Liouville fractional
derivative, this implies researchers may have choice while dealing with fractional
partial differential equations with new trends of fractional calculus. In this section,
the discritization of AB integral is presented.
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In this work, we consider t ∈ [0, T ], α ∈ (0, 1) and x ∈ [a, b]. To do the discritiza-
tion of the AB-integral we start by discritizing the time domains [0, T ] by replacing
grid over the whole domain.
τ = T

h , tk, k = 0, 1, 2, 3, ..., n, where tk = kτ , k = 0, 1, 2, 3, ..., n. The same

with space domain [a, b], ξ = b
m , xj , j = 0, 1, 2, 3, ...,m, where xj = jξ or k =

0, 1, 2, 3, ..., n and j = 0, 1, 2, 3, ...,m.

Iαt f(xj , tk) =
1− α

2AB(α)
(fk+1
j + fkj ) (29)

+
α

AB(α)Γ(α)

k−1∑
i=0

ti+1∫
ti

(tk − y)α−1f(xj , y)dy

=
1− α

2AB(α)
(fk+1
j + fkj )

+
α

AB(α)Γ(α)

k−1∑
i=0

ti+1∫
ti

(tk − y)α−1
f i+1
j + f ij

2
dy

+Rik,α,

Iαt f(xj , tk) =
1− α

2AB(α)
(
fk+1
j + fkj

2
)

+
α

AB(α)Γ(α)

k−1∑
i=0

(
f i+1
j + f ij

2

)[
(k − i)α

− (k − i+ 1)
α

]
dy +Rik,α.

Here

Rik,α =
α

AB(α)Γ(α)

k−1∑
i=0

ti+1∫
ti

(tk − y)α−1 f(xj , y)− f(xj , ti+1)

(tk − y)1−α dy (30)

=
α

AB(α)Γ(α)

k−1∑
i=0

ti+1∫
ti

(tk − y)α−1 f
′
(xj , ϕi)− f(y − ti+1)

(tk − y)1−α dy,

y < ϕi < ti+1,

where One can see that the Rik,α is bounded if we consider

∣∣Rik,α∣∣ ≤ tα

AB(α)Γ(α)
max

0≤t≤tk

∣∣∣f ′(xi, t)∣∣∣ k−1∑
i=0

ti+1∫
ti

(tk − y)α−1dy (31)

≤
∑

AB(α)Γ(α)
tαk max
t∈(0,ti+1)

∣∣∣f ′(xi, t)∣∣∣ .
Lemma 3. Let βαi = (i+ 1)α− iα, i = 0, 1, 2, ..., n, we have if f(x, t) ∈ C ′ ([0, T ]×
[a, b]) , then

AB
0 Iαt f(xi, tk) =

τα

2AB(α)Γ(α)

k−1∑
i=0

bαi
(
fk−i−1
j + fk−ij

)
, (32)

where
∣∣∣Rik,α∣∣∣ ≤ τBtαk , k = 0, 1, 2, ..., n [16] .
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Here we evaluate the derivative of AB respect to time. By definition

Dt
AB
0 Iαt f(x, t) =

1− α
AB(α)

∂tf(x, t) +
α

AB(α)Γ(α)

d

dt

t∫
0

f(x, y)

(t− y)1−α dy. (33)

We chose here

∂tf(x, tk) = f(x, tk+1)− f(x, tk),

z
′
(t) =

f(x,∆t+ t)− f(x, t)

∆t
=
f(x, t+ τ)− f(x, t)

τ
. (34)

For k = 0, 1, 2, 3, ..., n, the following is obtain

Dt
AB
0 Iαt f(x, tk) =

1− α
AB(α)

[f(x, tk+1)− f(x, tk)] (35)

+
α

AB(α)Γ(α)

 tk+1∫
0

f(x, y)

(tk+1 − y)1−α dy −
tk∫

0

f(x, y)

(tk − y)1−α dy

 .
Nevertheless

tk+1∫
0

f(x, y)

(tk+1 − y)1−α dy −
tk∫

0

f(x, y)

(tk − y)1−α dy (36)

=

τ∫
0

f(x, y)

(tk − y)1−α + Iαz(tk),

where also
τ∫

0

f(x, y)

(tk − y)1−α dy =

τ∫
0

f(x, τ)

(tk − y)1−α dy +

τ∫
0

f(x, y)− f(x, τ)

(tk − y)1−α dy, (37)

thus

Dt
AB
0 Iαt f(x, tk) =

α

AB(α)Γ(α)

τ∫
0

f(x, y)

(tk − y)1−α dy + AB
0 Iαz(tk). (38)

If we consider the function f(x, t) ∈ C2 [0, T ] then∣∣∣∣∣∣ α

AB(α)Γ(α)

τ∫
0

f(x, y)− f(x, τ)

(tk − y)1−α dy

∣∣∣∣∣∣ =

∣∣∣∣∣∣ α

AB(α)Γ(α)

τ∫
0

∂f(x, ξ)(y − τ)

(tk − y)1−α dy

∣∣∣∣∣∣
≤ τα+1

AB(α)Γ(α)
βαk−1 max

t∈(0,τ ]
|∂ξf(x, ξ)| ,

where 0 < ξ < τ. This leads us to have

AB
0 Iαt z(tk) =

1− α
AB(α)

z(tk) +
τα

AB(α)Γ(α)

k−1∑
i=1

bαk−1z(tk+i) +R1
k,α , (39)

with ∣∣R1
k,α

∣∣ ≤ τ

AB(α)Γ(α)
tαk−1 max

t∈[0,tk−1]

∣∣∣z′ ∣∣∣ (40)
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≤ τ

AB(α)Γ(α)
tαk−1 max

t∈[0,tk−1]
|f ′(x, t+ τ)− f ′(x, t)|

=
τ

AB(α)Γ(α)
tαk−1 max

0≤t≤tk

∥∥∥f ′′ξk(x, ξk)
∥∥∥ , 0 < ξk < tk ..

Finally the following numerical approximation is obtained.

Dt
AB
0 Iαt f(x, tk) (41)

=
1− α
AB(α)

(
f(x, tk+1) + f(x, tk)

2

)

+
τα

AB(α)Γ(α)

 f(x, tk) + f(x, tk−1)

+
k−1∑
i=1

(
bαi − bαi−1

)
[f(x, tk−j)− f(x, tk−j−1)]


+R3

k,α,

with
∣∣∣R3

k,α

∣∣∣ ≤ Bbαk−1τ
α+1.

6.1. Application to the new model of predator prey. In this section, we
develop the numerical solution of the new model of predator-prey. Let

f1(x, t, v, u) = −χu(x, t)v(x, t)

1 + χhu(x, t)
+ ru(x, t)

(
1− u(x, t)

k

)
(42)

−(1− ρ1)v1(x, t)∂xu(x, t)− ρ1φ1∂tu(x, t),

f2(x, t, v, u) =
βu(x, t)v(x, t)

1 + χhu(x, t)
− dv(x, t)

−(1− ρ2)v2(x, t)∂xu(x, t)− ρ2φ2∂tv(x, t).

Then the equation can be converted to

u(x, t)− u(x, 0) = AB
0 Iαt f1(x, t, v, u), (43)

v(x, t)− v(x, 0) = AB
0 Iαt f2(x, t, v, u).

Using the numerical scheme suggested here, we have

uk+1
i + uki

2
− u(xi, 0) (44)

=
1− α

2AB(α)
[f1(xi+1, tk+1, v

k+1
i , uk+1

i ) + f1(xi, tk, v
k
i , u

k
i )]

+
α

AB(α)Γ(α)

k−1∑
j=0

[f1(xi+1, tj+1, v
j+1
i , uj+1

i ) + f1(xi, tj , v
j
i , u

j
i )]

.[(k − j)α − (k − j − i)α],

vk+1
i + vki

2
− v(xi, 0) (45)

=
1− α

2AB(α)
[f2(xi+1, tk+1, v

k+1
i , uk+1

i ) + f2(xi, tk, v
k
i , u

k
i )]

+
α

AB(α)Γ(α)

k−1∑
j=0

[f2(xi+1, tj+1, v
j+1
i , uj+1

i ) + f2(xi, tj , v
j
i , u

j
i )]

.[(k − j)α − (k − j − i)α].
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6.2. Graphical simulations. Using the numerical scheme of (44)-(45) for the new
model of predator-prey above, we obtain the following numerical simulations. We
give these simulations in figure 1 for α = 0.05, in figure 2 for α = 0.5, in figure 3
for α = 0.8 and finally in figure 4 for α = 1.

Figure 1. Numerical solution for α = 0.05.

Figure 2. Numerical solution for α = 0.5.

7. Conclusion. Recently, based on the generalized Mittag-Leffler function, a new
concept of fractional differentiation was suggested and applied in many fields of
science. The aim of the new concept of to well describe natural occurrences as
existing derivatives based on power law have some limitation while modelling real
world problems. In this paper a new model of predator-prey is suggested, which
include the velocity and the animal instinct. The time-fractional based on the ABC
derivative is used. The existence and uniqueness of couple solutions are investi-
gated. A new numerical scheme based on Atangana-Baleanu fractional integral is
suggested. The new numerical scheme is used to solve numerically the new model.
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Figure 3. Numerical solution for α = 0.8.

Figure 4. Numerical solution for α = 1.
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