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Abstract
In this article, we consider the self-adjoint singular operators associated with the
Sturm–Liouville expression

Ly := − [
p (t) y� (t)

]∇ + q (t) y (t) , t ∈ (−∞,∞)T.

on time scaleT. Some conditions are given for this operator to have a discrete spectrum.
Further, we investigate the continuous spectrum of this operator. We also prove that
the regular Sturm–Liouville operator on time scale is semi-bounded from belowwhich
is not studied in literature yet.

Keywords Sturm–Liouville operator · Unbounded time scales · Splitting method ·
Discrete spectrum · Continuous spectrum

Mathematics Subject Classification 34N05 · 47A10 · 47B25

1 Introduction

Nowadays, dynamic equations on time scales has attracted much interest because it
unites the theory of differential and difference equations. In the context, it has led
to several important applications, e.g., in the study of heat transfer, insect population
models, epidemic models stock market,and neural networks (see [1–4]).

On the other hand, in the literature, there is a few study concerning spectral theory
of the Sturm–Liouville operators on time scales. In [5], the authors studied a second-
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order Sturm–Liouville operator with a spectral parameter in the boundary condition
on bounded time scales. They proved the completeness of the system of eigenvectors
and associated vectors of the dissipative Sturm–Liouville operators on bounded time
scales. In [6], Guseinov established some expansion results for a Sturm–Liouville
problems on time scale. In [7], the author constructed a space of boundary values
for minimal symmetric singular second-order dynamic operators on semi-infinite and
infinite time scales in limit-point and limit-circle cases. He gave a description of all
maximal dissipative, maximal accumulative, selfadjoint, and other extensions of such
symmetric operators in terms of boundary conditions. In [8], the author studied the
maximal dissipative second-order dynamicoperators on semi-infinite time scale. In [9],
the author studied an operator defined by the second order Sturm–Liouville equation
on an unbounded time scale. For such an operator he gave characterisations of the
domains of its Krein-von Neumann and Friedrichs extensions by using the recessive
solution. In [10], the author proved the completeness of the system of eigenfunctions
for dissipative Sturm–Liouville operators. In [11], Agarwal et al. gave an oscillation
theorem and establish Rayleigh’s principle for Sturm–Liouville eigenvalue problems
on time scales with separated boundary conditions. In [12], Huseynov investigated
the classical concepts of Weyl limit point and limit circle cases for second order
linear dynamic equations on time scales. In [13], the authors obtained a min–max
characterization of the eigenvalues of the Sturm–Liouville problems on time scales,
and various eigenfunction expansions for functions in suitable function spaces. In
[14], the author examined Green’s function for an nth -order focal boundary value
problem on time scales. In [15], the authors studied properties of the spectrum of a
Sturm–Liouville operator on semi-infinite time scales.

In the operator theory, one of the important operator class is the class of self-adjoint
differential operators. This operators play an important role in quantum mechanics.
The spectrum of such operators depend on the behavior of the coefficients of the
corresponding differential expression. This problem has been investigated by many
mathematicians (see [15–25]).

The purpose of this paper is to extend some results obtained in [15] to the case of
singular Sturm–Liouville dynamic equation

Ly := − [
p (t) y� (t)

]∇ + q (t) y (t) = λy (t) , t ∈ (−∞,∞)T, (1)

where p, q are real-valued continuous functions on unbounded time scale T and
p (t) �= 0 for all t ∈ T. We prove that the regular Sturm–Liouville operator on
time scale is semi-bounded from below. Using the splitting method [17], we will give
some conditions for the self-adjoint operator associated with the singular expression
(1) to have a discrete spectrum. We also investigate the continuous spectrum of this
operator.

2 Preliminaries

Now, we recall some necessary fundamental concepts of time scales, and we refer to
[1,6,9,12,26–32] for more details.
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Definition 1 Let T be a time scale. The forward jump operator σ : T → T is defined
by

σ (t) = inf {s ∈ T : s > t} , t ∈ T

and the backward jump operator ρ : T → T is defined by

ρ (t) = sup {s ∈ T : s < t} , t ∈ T.

If σ (t) > t, we say that t is right scattered, while if ρ (t) < t, we say that t is left
scattered. Also, if t < supT and σ (t) = t, then t is called right dense, and if t > inf T

and ρ (t) = t, then t is called left-dense. We introduce the sets T
k, Tk, T

∗ which
are derived form the time scale T as follows. If T has a left scattered maximum t1,
then T

k = T − {t1} , otherwise T
k = T. If T has a right scattered minimum t2, then

Tk = T − {t2} , otherwise Tk = T. Finally, T
∗ = T

k ∩ Tk .

Definition 2 A function f on T is said to be �-differentiable at some point t ∈ T
k if

there is a number f �(t) such that for every ε > 0 there is a neighborhood U ⊂ T of
t such that

| f (σ (t)) − f (s) − f �(t)(σ (t) − s)| ≤ ε|σ(t) − s|, s ∈ U .

Analogously one may define the notion of ∇-differentiability of some function using
the backward jump ρ. One can show (see [26])

f �(t) = f ∇(σ (t)), f ∇(t) = f �(ρ(t))

for continuously differentiable functions.

Example 3 If T = R, then we have

σ(t) = t, f �(t) = f ′(t).

If T = Z, then we have

σ(t) = t + 1, f �(t) = � f (t) = f (t + 1) − f (t) .

If T = qN0 = {
qk : q > 1, k ∈ N0

}
, (N0 := {0, 1, 2, . . .}) then we have

σ(t) = qt, f �(t) = f (qt) − f (t)

qt − t
.

Definition 4 Let f : T → R be a function, and a, b ∈ T. If there exists a function F :
T → R, such that F� (t) = f (t) for all t ∈ T

k, then F is a �-antiderivative of f . In
this case the integral is given by the formula

∫ b

a
f (t)�t = F (b) − F (a) for a, b ∈ T.
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Analogously one may define the notion of ∇-antiderivative of some function.

Let L2∇(T) be the space of all functions defined on T such that

‖ f ‖ :=
(∫ b

a
| f (t)|2 ∇t

)1/2

< ∞.

Let T be a time scale such that inf T = −∞ and supT = ∞. We will denote T also
as (−∞,∞)T.

The space L2∇(−∞,∞)T is a Hilbert space with the inner product (see [33])

( f , g) :=
∫ ∞

−∞
f (t) g (t)∇t, f , g ∈ L2∇(−∞,∞)T.

The Wronskian of y(.), z(.) is defined by (see [7,9,26])

Wt (y, z) := p (t)
[
y (t) z� (t) − y� (t) z (t)

]
, t ∈ T. (2)

Definition 5 Let DA denote a subset of the complexHilbert space H .A linear operator
A is said to be Hermitian if, for all x, y ∈ DA, (Ax, y) = (x, Ay) holds. A Hermitian
operator with a domain DA of definition dense in H is called a symmetric operator.
An operator A∗ defined on DA∗ ⊆ H is called the adjoint of symmetric operator A
if for all x ∈ DA, y ∈ DA∗ , (Ax, y) = (x, A∗y) . An operator with a domain DA of
definition dense in H is said to be self-adjoint if A = A∗. An operator A is said to be
compact if it maps every bounded set into a compact set (see [34]).

Definition 6 A complex number λ is called a regular point of the linear operator A
acting in complex Hilbert space H if

(R1) The inverse Rλ (A) = (A − λI )−1 (where I is the identity operator in H )
exists, and

(R2) Rλ (A) is bounded operator defined on the whole space H .

Let
(R3) Rλ (A) is defined on a set which dense H .

The operator Rλ(A) is then called the resolvent of the operator A. All non-regular
points λ are called points of the spectrum of the operator A.

The point spectrum or discrete spectrum σp (A) is the set such that Rλ (A) does
not exist. A λ ∈ σp (A) is called an eigenvalue of A. The spectrum of the operator A
is said to be purely discrete if it consists of a denumerable set of eigenvalues with no
finite point of accumulation.

The continuous spectrum σc (A) is the set such that Rλ (A) exists and satisfies (R3)
but not (R2).

The residual spectrum σr (A) is the set such that Rλ (A) exists but does not satisfy
(R3) (see [35]).
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Theorem 7 [34] All self-adjoint extensions of a closed, symmetric operator which has
equal and finite deficiency indices have one and same continuous spectrum.

Theorem 8 [35] The residual spectrum σr (A) of a self-adjoint linear operator acting
on a complex Hilbert space H is empty.

Definition 9 [34] A symmetric operator A is said to be semi-bounded from below if
there is a number m such that, for all x ∈ DA, the inequality

(Ax, x) ≥ m ‖x‖2

holds. Similarly, if for all x ∈ DA, there is a number M such that the inequality

(Ax, x) ≤ M ‖x‖2

holds, then A is said to be semi-bounded from above.

Theorem 10 [34] If a symmetric operator A with finite deficiency indices (n, n) sat-
isfies the condition

(Ax, x) ≥ m ‖x‖2 , x ∈ DA,

or the condition

(Ax, x) ≤ M ‖x‖2 , x ∈ DA,

then the part of the spectrum of every self-adjoint extension of A which lies to the left
of m or to the right of M can consist of only a finite number of eigenvalues and the
sum of their multiplicities does not exceed n.

Definition 11 [34] The direct sum A1 ⊕ A2 of two operators A1, A2 in the spaces
H1, H2 is an operator in the space H1 ⊕ H2 of all ordered pairs {x1, x2} , x1 ∈ H1,

x2 ∈ H2; its domain of definition is the set of all ordered pairs {x1, x2} , x1 ∈
DA1, x2 ∈ DA2 , and

(A1 ⊕ A2) {x1, x2} = {A1x1, A2x2} .

It is easily seen that if A1 and A2 are each self-adjoint operators, then their direct sum
A1 ⊕ A2 is also a self-adjoint operator.

3 Main results

Let us consider the linear set Dmax consisting of all vectors y ∈ L2∇(−∞,∞)T such
that y and py∇ are locally � absolutely continuous functions on (−∞,∞)T and
Ly ∈ L2∇(−∞,∞)T. We define the maximal operator Lmax on Dmax by the equality
Lmaxy = Ly.
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For every y, z ∈ Dmax we have Green’s formula (or Lagrange’s identity)

∫ b

a
(Ly)(t)z(t)∇t −

∫ b

a
y(t)(Lz)(t)∇t

= [y, z] (b) − [y, z] (a) , a, b ∈ (−∞,∞)T, a < b,

where [y, z](t) denotes the Lagrange bracket defined by

[y, z](t) := p(t)(y(t)z∇(t) − y∇(t)z(t))

(see [7,9,31]).
It is clear that from Green’s formula limits

[y, z] (∞) := lim
t→∞ [y, z] (t), [y, z] (−∞) := lim

t→∞ [y, z] (t)

exist and are finite for all y, z ∈ Dmax.
Let Dmin be the linear set of all vectors y ∈ Dmax satisfying the conditions

[y, z] (−∞) = [y, z] (∞) = 0, (3)

for arbitrary z ∈ Dmax. The operator Lmin, that is the restriction of the operator Lmax
to Dmin is called the minimal operator and the equalities Lmax = L∗

min holds. Further
(it follows from (3)) Tmin is closed symmetric operator with deficiency indices (1, 1)
or (2, 2) [7,9,34,36].

Let us consider the linear set Da
max consisting of all vectors y ∈ L2∇(−a, a)T (a ∈ T,

a > 0) such that y and py∇ are � absolutely continuous functions on [−a, a]T and
Ly ∈ L2∇(−a, a)T. We define the maximal operator La

max on Da
max by the equality

La
maxy = Ly.Let Da be the linear set of all vectors y ∈ Da

max satisfying the conditions

y (−a) = y (a) = 0. (4)

We define the operator La on Da by the equality La y = La
maxy.

Theorem 12 If p (t) > 0 (t ∈ [−a, a]T), a > 0), then the regular operator La

acting in L2∇(−a, a)T is semi-bounded from below. Further, the negative part of the
spectrum of La consists of not more that a finite number of negative eigenvalues of
finite multiplicity.

Proof By integration by parts, we get

(La y, y) =
∫ a

−a
Lyy∇t =

∫ a

−a

[
− [

py�
]∇ + q(t)y

]
y∇t

=
∫ a

−a

[
− [

py�
]∇

y + q(t) |y|2
]
∇t

=
∫ a

−a

[∣∣py�
∣∣2 + q(t) |y|2

]
∇t .
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We set

v (t, ξ) =
{
1, ξ ≤ t
0, ξ > t

,

and

H (ξ, η) = −
∫ a

−a
q (t) v (t, ξ) v (t, η) ∇t .

For y ∈ Da, we have

y (t) =
∫ a

−a

v (t, ξ)
(
py�

)
(ξ)

p (ξ)
∇ξ.

Hence, we get

(La y, y) =
∫ a

−a

∣∣(py�) (ξ)
∣∣2

p (ξ)
∇ξ

−
∫ a

−a

∫ a

−a

H (ξ, η) (py�) (ξ)
(
py�) (η)

)

p (ξ) p (η)
∇ξ∇η. (5)

Let L2∇,p (−a, a)T be the Hilbert space of all complex-valued functions defined on
[−a, a]T with the inner product

( f1, f2)1 =
∫ a

−a
f1 (t) f2 (t)

1

p (t)
∇t .

In L2∇,p (−a, a)T we consider the integral operator K with the symmetric kernel
H(ξ, η) :

K f =
∫ a

−a

H (ξ, η)

p (η)
f (η)∇η,

where

∫ a

−a

∫ a

−a

|H (ξ, η)|2
p (ξ) p (η)

∇ξ∇η < ∞,

i.e., H(ξ, η) is a Hilbert-Schmidt kernel. Since the symmetric kernel H(ξ, η) is a
Hilbert-Schmidt kernel, the integral operator K is a compact operator in the space
L2∇,p (−a, a)T. Thus it has a purely discrete spectrum.Letϕ1, ϕ2, ϕ3, . . . be a complete
orthonormal system of eigenfunctions of the operator K and λ1, λ2, λ3, . . . be the
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corresponding eigenvalues. From the Hilbert-Schmidt theorem, we get

(K f , f )1 =
∞∑

k=1

λk
∣
∣( f , ϕk)1

∣
∣2 .

As k → ∞, we have λk → 0. Then there is a certain number N such that λk < 1 for
k > N . For ( f , ϕk)1 = 0, k = 1, 2, . . . , N , we have

(K f , f )1 =
∞∑

k=N+1

λk
∣∣( f , ϕk)1

∣∣2 ≤
∞∑

k=N+1

∣∣( f , ϕk)1
∣∣2 ,

that is,

(K f , f )1 ≤ ( f , f )1 . (6)

Let D denote the manifold of all functions y ∈ Da which satisfy the conditions

(
p f �, ϕk

)
1 = 0, k = 1, 2, . . . , N , y ∈ Da .

By (6), we have, for y ∈ D,

∫ a

−a

∫ a

−a

H (ξ, η)
(
py�) (ξ)

) (
py� (η)

)

p (ξ) p (η)
∇ξ∇η

≤ (
Kpy�, py�

)
1 ≤ (

py�, py�
)
1 =

∫ a

−a

∣∣(py�) (ξ)
∣∣2

p (ξ)
∇ξ.

From the equality (5), we obtain

(La y, y) ≥ 0.

On the other hand, the dimension of themanifold Da moduloD is N , and consequently,
the operatorLa is semi bounded from below on the whole manifold Da . It is clear that
the operator La is a self-adjoint operator. By Theorem 10, we get the desired result. ��

Let H ′ denotes the set of all functions f from L2∇(−∞,∞)T which vanish outside
a finite interval [α, β] ⊂ (−∞,∞)T and D′

min = H ′ ∩ Dmin.

Further, let L ′
min denote the restriction of the operator Lmin to D′. Then Lmin is the

closure of the operator L ′
min, i.e., L̃

′
min = Lmin [34].

Now we restrict D′
min by imposing the additional conditions

y (−c) = y (c) = 0,

where c is fixedpoint of the interval (0,∞)T.By this restriction,weobtain themanifold
D′′
min.
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The restriction L ′′
min of the operator L ′

min to D′′
min is called the splitting of the

operator L ′
min at the points −c and c of the interval (−∞,∞)T. It is clear that

L ′′
min = L ′

1 ⊕ Lc ⊕ L ′
2, (7)

i.e., the operator L ′′
min is the direct sum of three operators L ′

1, Lc and L ′
2 in the spaces

L2∇ (−∞,−c)T , L2∇ (−c, c)T and L2∇ (c,∞)T , where L ′
1, Lc and L ′

2 are generated
in these spaces from the Sturm–Liouville expression L in the same way as L ′

min was.
If L1 = L̃ ′

1, and L2 = L̃ ′
2 are the closures of the operators L ′

1 and L ′
2, then (7)

implies that

L̃ ′′
min = L1 ⊕ Lc ⊕ L2.

If we extend the symmetric operators L1 and L2 into self-adjoint operators L1,s and
L2,s in the spaces L2∇ (−∞,−c)T , and L2∇ (c,∞)T respectively, then the direct sum

A = L1,s ⊕ Lc ⊕ L2,s

will be a self-adjoint extension of the symmetric operator L̃ ′′
min. The spectrum of the

operator A is the set-theoretic sum of the spectra of L1,s, Lc and L2,s .

Since the deficiency indices of the operator L̃ ′′
min are finite, by Theorem 7, all its

self-adjoint extensions have one and the same continuous spectrum. Both the operator
A and also each self-adjoint extension Ls of the operator Lmin are such extensions.
Hence, the continuous parts of spectrum of the two operators A and Ls coincide.

Therefore, we have the following theorem:

Theorem 13 The continuous parts of the spectrum of every self-adjoint extension of
the operator Lmin is the set-theoretic sum of the continuous parts of the spectra of
L1,s, Lc and L2,s, where L1,s, Lc and L2,s have been obtained by the splitting of
the operator Lmin.

Theorem 14 If

lim
t→±∞ q (t) = +∞ (8)

and

p (t) > 0, t ∈ (−∞,∞)T (9)

then every self-adjoint extension Ls of the singular operator Lmin has a purely discrete
spectrum.

Proof Let N > 0 be an arbitrary number. From (8), one can choose numbers −c and
c such that

|q (t)| > N for t ∈ (−∞,∞)T\ (−c, c) . (10)
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By the condition (9), via integration by parts, we obtain (y ∈ DL ′
1
)

(
L ′
1y, y

) =
∫ −c

−∞
Lyy∇t =

∫ −c

−∞

[
− [

py�
]∇ + q(t)y

]
y∇t

=
∫ −c

−∞

[
− [

py�
]∇

y + q(t) |y|2
]
∇t

=
∫ −c

−∞

[
p

∣∣y�
∣∣2 + q(t) |y|2

]
∇t > N

∫ −c

−∞
|y|2 ∇t = N (y, y) .

Hence the operator L ′
1 is bounded from below and its closure L1 is also bounded from

below by the number N . Therefore, by Theorem 10, the half-axis −∞ < λ < N ,

contains no point of the continuous spectrum of the self-adjoint extension L1,s of L1.

Similarly, by the condition (9), via integration by parts, we obtain (y ∈ DL ′
2
)

(
L ′
2y, y

) =
∫ ∞

c
Lyy∇t =

∫ ∞

c

[
− [

py�
]∇ + q(t)y

]
y∇t

=
∫ ∞

c

[
− [

py�
]∇

y + q(t) |y|2
]
∇t

=
∫ ∞

c

[
p

∣∣y�
∣∣2 + q(t) |y|2

]
∇t > N

∫ ∞

c
|y|2 ∇t = N (y, y) .

Hence the operator L ′
2 is bounded from below and its closure L2 is also bounded from

below by the number N . Therefore, by Theorem 10, the half-axis −∞ < λ < N ,

contains no point of the continuous spectrum of the self-adjoint extension L2,s of L2.

On the other hand, since the operator L2 is regular and self-adjoint, the spectrum
of Lc is purely discrete. Hence the half-axis −∞ < λ < N , contains no point of the
continuous spectrum of A = L1,s ⊕ Lc ⊕ L2,s .

ByTheorem7, every self-adjoint extension Ls of the operator Lmin has this property.
Since the number N is arbitrary, the spectrum of the operator Ls has no continuous
part at all. ��
Theorem 15 Let

lim
t→±∞ q (t) = M

and p (t) > 0 (t ∈ (−∞,∞)T). Then the interval (−∞, M) contains no point of the
continuous spectrum of any, self-adjoint extension Ls of the singular operator Lmin;
on the contrary, any Ls can only have at most point-eigenvalues on this interval and
these can have a point of accumulation only at λ = M .

Proof If we decompose the operator at points −c and c such that

q (t) > M − ε for x ∈ (−∞,∞)T\ (−c, c) ,
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then we obtain

(
L ′
1y, y

)
> (M − ε) (y, y) .

Hence, the part of the spectrum of L1 lying in the interval (−∞, M − ε) can consist
only of a finite number of eigenvalues of finite multiplicity. Likewise, we obtain

(
L ′
2y, y

)
> (M − ε) (y, y) .

Consequently, the part of the spectrum of L2 lying in the interval (−∞, M − ε) can
consist only of a finite number of eigenvalues of finite multiplicity. On the other hand,
by Theorem 12, the operator L2 is regular and bounded below. Hence its spectrum
is purely discrete; and any point of accumulation of the spectrum L2 can only be at
λ = +∞. Thus, from Theorem 13, we get the desired result. ��

Now, we need following lemma.

Lemma 16 If the interval [λ0 − δ, λ0 + δ] contains no point of the spectrum of a self-
adjoint operator A except perhaps for a finite number of eigenvalues each of finite
multiplicity, and if Q is a bounded Hermitian operator satisfying the condition

‖Q‖ < δ,

then the point λ0 does not lie in the continuous part of the spectrum of the operator
A + Q.

Proof See [34]. ��
Theorem 17 Let p(t) ≡ 1 and

lim
t→±∞ |q (t)| = M

Then any interval of length greater than 2M, of the positive half-axis contains con-
tinuous spectrum of any self-adjoint extension Ls of the singular operator Lmin.

Proof Suppose, contrary to our claim, that an interval [λ0 − δ, λ0 + δ] of the half-axis
λ > 0 contains no point of the continuous spectrum of Ls, δ > M . Then, the operator
may be decomposed, this interval would contain no point of the continuous spectrum
of any self-adjoint extension of Lmin. If we choose the points −c and c such that

|q (t)| ≤ M + ε < δ for |t | > c,

then, by Lemma 16, λ0 can not belong to the continuous spectrum of the self-adjoint
extension of the minimal operator generated by the expression − [

y�
]∇

and the same
boundary conditions. But this is contradiction because the continuous spectrum of last
operator covers the whole of the positive half-axis. ��
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In particular, for M = 0 we have the following corollary.

Corollary 18 Let p(t) ≡ 1 and

lim
t→±∞ |q (t)| = 0.

Then the whole positive half-axis is covered by the continuous spectrum of any self-
adjoint extension Ls of the singular operator Lmin.

Corollary 19 Let p(t) ≡ 1 and

lim
t→±∞ |q (t)| = ρ < ∞, lim

t→±∞
|q (t)| = σ > −∞.

Then any interval, of length greater than (ρ − σ) , of the half-axis

λ >
1

2
(ρ + σ)

contains of the continuous spectrum of any self-adjoint extension Ls of the singular
operator Lmin.

Proof For, if q1 (t) = q (t) − 1
2 (ρ + σ) , then

lim
t→±∞ |q1 (t)| = 1

2
(ρ − σ) ,

and the result follows by replacing q (t) by q1 (t) , i.e., by applying Theorem 17 to the
operator Ls − 1

2 (ρ + σ) I . ��
Example 20 Let T = R. The Hermite differential equation is given by

−y′′ + t2y = λy, for all t ∈ (−∞,∞) .

Since p (t) ≡ 1 and

lim
t→±∞ t2 = ∞,

we can apply Thoerem 14. Thus the self-adjoint singular operator Ls corresponding to
the equation−y′′+t2y = λy has a purely discrete spectrum. In fact, for all n ∈ N0 and

for the eigenvalues λ = 2n+1, this equation has the Hermite functions e

(
− 1

2 t
2
)

Hn(t)
for solutions (eigenfunctions); please see [37, Chapter IV, Section 2].

Example 21 Consider the dynamic equation

−y�∇ + e−t2 y = λy, t ∈ (−∞,∞)T,
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where p (t) ≡ 1 and q (t) = e−t2 . We need to show that the assumptions in Theo-
rem 15. It is clear that p (t) > 0, where t ∈ (−∞,∞)T. Furthermore we have

lim
t→±∞ |q (t)| = lim

t→±∞

∣∣∣e−t2
∣∣∣ = 0,

i.e., the assumptions of Theorem 15. Then the interval (−∞, 0) contains no point
of the continuous spectrum of any, self-adjoint extension Ls of the singular operator
Lmin; on the contrary, any Ls can only have at most point-eigenvalues on this interval
and these can have a point of accumulation only at λ = 0.
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