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In this study, we investigate the statistical continuity in a probabilistic normed
space. In this context, the statistical continuity properties of the probabilistic
norm, the vector addition and the scalar multiplication are examined.
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1. Introduction

A probabilistic normed space (briefly, a PN space) is a natural generalization of an
ordinary normed linear space. In a PN space, the norms of the vectors are represented by
probability distribution functions rather than crisp numerical values. If p is an element of a
PN space, then its norm is denoted by Np, and the value Np(x) is interpreted as the
probability that the norm of p is smaller than x, where x2 [0,1].

PN spaces were first introduced by S̆erstnev in [17] by means of a definition that was
closely modelled on the theory of normed spaces. In 1993, Alsina et al. [1] presented a new
definition of a PN space which includes the definition of S̆erstnev [17] as a special case.
This new definition has naturally led to the definition of the principal class of PN spaces,
the Menger spaces, and is compatible with various possible definitions of a probabilistic
inner product space. It is based on the probabilistic generalization of a characterization of
ordinary normed spaces by means of a betweenness relation and relies on the tools of the
theory of probabilistic metric (PM) spaces (see [13,14]). This new definition quickly
became the standard one and it has been adopted by many authors (for instance, [3, 8–12]),
who have investigated several properties of PN spaces. A detailed history and the
development of the subject up to 2006 can be found in [15].

Our work has been inspired by Alsina et al. [2], in which the continuity properties of
the probabilistic norm and the vector space operations (vector addition and scalar
multiplication) are studied in detail and it is shown that a PN space endowed with the
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strong topology turns out to be a topological vector space under certain conditions.

The aim of this article is to investigate a more general and important type of continuity,

namely, the statistical continuity of the probabilistic norm and the vector space operations

via the concept of strong statistical convergence, that we have recently introduced in [16].

The strong statistical convergence is a natural extension of the statistical convergence of

real sequences (see [6] and [18]) to sequences in a PM space endowed with the strong

topology. Since the study of continuity in PN spaces is fundamental to probabilistic

functional analysis, we feel that the concept of statistical continuity in a PN space would

provide a more general framework for the subject.
The article is organized as follows. In the second section, some preliminary concepts

related to PN spaces and statistical convergence are presented. In the third section, the

statistical continuity properties of the probabilistic norm and the vector space operations

are investigated. In this context, we obtain some main results that are just parallel to the

ones given in [2].

2. Preliminaries

First we recall some of the basic concepts related to the theory of PN spaces. For more

details we refer to [2,13,14].

Definition 2.1 A distribution function is a nondecreasing function F defined on

R¼ [�1,þ1], with F(�1)¼ 0 and F(1)¼ 1.
The set of all distribution functions that are left-continuous on (�1,1) is denoted

by �.
The elements of � are partially ordered via

F � G iff FðxÞ � GðxÞ for all x 2 R:

Definition 2.2 For any a in R, "a, the unit step at a, is the function in � given by

"aðxÞ ¼
0, �1 � x � a

1, a5 x � 1

(
for�1 � a51,

"1ðxÞ ¼
0, �1 � x51

1, x ¼ 1
:

(

Definition 2.3 The distance dL(F,G) between two functions F,G2� is defined as the

infimum of all numbers h2 (0, 1] such that the inequalities

Fðx� hÞ � h � GðxÞ � Fðxþ hÞ þ h

and

Gðx� hÞ � h � FðxÞ � Gðxþ hÞ þ h

hold for every x 2 �ð1=hÞ, ð1=hÞð Þ:
dL is called the modified Lévy metric on �.

Definition 2.4 A distance distribution function is a nondecreasing function F defined on

Rþ¼ [0,1] that satisfies F(0)¼ 0 and F(1)¼ 1, and is left-continuous on (0,1).
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The set of all distance distribution functions is denoted by �þ and the metric space
(�þ, dL) is compact.

Definition 2.5 A triangle function is a binary operation � on �þ, �: �þ��þ!�þ, that
is commutative, associative, nondecreasing in each place, and has "0 as identity.

Definition 2.6 A probabilistic normed space (briefly, a PN space) is a quadruple
(S, �, �, �*) where S is a real linear space, � and �* are continuous triangle functions, and
� is a mapping from S into the space of distribution functions �þ, such that – writing Np

for �(p) – for all p, q in S, the following conditions hold:

(N1) Np¼ "0 if and only if p¼ �, the null vector in S,
(N2) N�p¼Np

(N3) Npþq� �(Np,Nq)
(N4) Np� �*(N�p,N(1� �)p), for all � in [0, 1].

It follows from (N1), (N2) and (N3) that, if F : S� S! �þ is defined via

Fðp; qÞ ¼ Fpq ¼ Np�q; ð2:1Þ

then (S,F , �) is a PM space ([13], Chap. 8). Furthermore, since � is continuous, the system
of neighbourhoods fVp(�): p2S and �40g, where

Vpð�Þ ¼ q 2 S: dL Fpq; "0
� �

5 �
� �

ð2:2Þ

determines a first countable and Hausdorff topology on S, called the strong topology. Thus,

the strong topology can be completely specified in terms of the convergence of sequences.
In the following, we list some of the basic concepts related to the theory of statistical

convergence and we refer to [6,7,18] for more details.

Definition 2.7 The natural density of a set K of positive integers is defined by

�ðKÞ ¼ lim
n!1

1

n
k 2 K: k � nf gj j

where jfk2K: k� ngj denotes the number of elements of K not exceeding n. Note that for a
finite subset K of N, we have �(K)¼ 0.

Notation We will be particularly concerned with integer sets having natural density zero.
Thus, if (xn) is a sequence such that (xn) satisfies property P for all n except a set of natural
density zero, then we say that (xn) satisfies property P for ‘almost all n’ and we abbreviate

this by ‘a.a.n’.

Definition 2.8 A real number sequence (xn) is said to be statistically convergent to a2R

provided that for each "40, the set

Kð"Þ ¼ n 2 N: xn � aj j � "f g

has natural density zero. In this case we write stat� lim xn¼ a.

Statistical convergence is also defined in an ordinary metric space as follows.

Definition 2.9 Let (X, �) be a metric space. A sequence (xn) of points of X is said to be
statistically convergent to an element x2X, provided that for each "40,

� n 2 N: � xn; xð Þ � "
� �� �

¼ 0:
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We denote this by stat� lim xn¼ x. Note that (xn) is statistically convergent to x2X iff

stat� lim �(xn,x)¼ 0; i.e. for each "40, we have �(xn, x)5" for a.a.n.

Using these concepts, we extend the statistical convergence to the setting of sequences

in a PN space endowed with the strong topology as follows.

Definition 2.10 ([16]) Let (S, �, �, �*) be a PN space. A sequence (pn) in S is strongly

statistically convergent to a point p in S, and we write pn �!
s�stat

p, provided that

� n 2 N: pn =2VpðtÞ
� �� �

¼ 0

for each t40. We call p as the strong statistical limit of (pn).

Using (2.1) and (2.2), we can say that the following statements are equivalent:

(i) pn �!
s�stat

p,
(ii) �(fn2N: dL(Npn�p

, "0)� tg)¼ 0, for each t40,
(iii) stat� lim dL(Npn�p

, "0)¼ 0.

Finally, we recall the concept of statistical continuity which is an important type

of sequential continuity. For a detailed discussion of statistical continuity, we refer to [4]

and [5].

Definition 2.11 A function f : R!R is said to be statistically continuous at a point x02R,

if stat� lim xn¼ x0 implies that stat� lim f(xn)¼ f(x0). If f is statistically continuous at

each point of a set M�R, then f is said to be statistically continuous on M.

In the following section, we extend the concept of statistical continuity to maps on

PN spaces.

3. Main results

In this section we investigate the statistical continuity properties of a probabilistic norm,

vector addition operation and scalar multiplication via the notion of strong statistical

convergence, and present some main results.

THEOREM 3.1 Let (S, �, �, �*) be a PN space. Let S be endowed with the strong topology,

and �þ be endowed with the dL – metric topology. Then � is a statistically continuous

mapping from S into �þ.

Proof It is known that the probabilistic norm � is a uniformly continuous mapping from

S into �þ (see [2]). Namely, for any t40 there is a �40 such that, dL(Np,Np0)5t whenever

p0 2Vp(�). Now let (pn) be a sequence in S such that pn �!
s�stat

p. Then we have

n 2 N: dL Npn ;Np

� �
� t

� �
� n 2 N: pn =2Vpð�Þ
� �

for each t40. Thus, we can write

� n 2 N: dL Npn ;Np

� �
� t

� �� �
� � n 2 N: pn =2Vpð�Þ

� �� �
: ð3:1Þ

Since pn �!
s�stat

p, the set on the right hand side of (3.1) has natural density zero.

Hence we get

� n 2 N: dL Npn ;Np

� �
� t

� �� �
¼ 0
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for each t40. Hence by Definition 2.9, we have stat� limNpn
¼Np. This means that � is

statistically continuous at p. Since p is arbitrary, we have that � is statistically continuous

on S. g

THEOREM 3.2 Suppose that the hypotheses of Theorem 3.1 are satisfied and that S�S is

endowed with the corresponding product topology. Then vector addition is a statistically

continuous mapping from S�S onto S.

Proof Let (pn) and (qn) be two sequences in S such that pn �!
s�stat

p and qn �!
s�stat

q. Then by

(N3), we can write

N pnþqnð Þ�ðpþqÞ � � Npn�p,Nqn�q

� �
and hence

dL N pnþqnð Þ�ðpþqÞ, "0
� �

� dL � Npn�p;Nqn�q

� �
, "0

� �
ð3:2Þ

for every n2N. Since the continuity of � implies its uniform continuity, we can say that for

any t40 there is a �40 such that, dL(�(F,G), "0)5t whenever dL(F, "0)5� and

dL(G, "0)5�, where F,G2�þ. Now let t40. Then we can find a �40 such that,

dL(�(Npn�p
, Nqn�q

), "0)5t (and hence dL(N(pnþ qn)�(pþq), "0)5t by (3.2)) whenever pn2Vp(�)
(i.e. dL(Npn�p

, "0)5�) and qn2Vq(�) (i.e. dL(Nqn�q
, "0)5�). Thus, we have

n 2 N: dL N pnþqnð Þ�ðpþqÞ, "0
� �

� t
� �

� n 2 N: pn =2Vpð�Þ
� �

[ n 2 N: qn =2Vqð�Þ
� �� � ð3:3Þ

for each t40. The inclusion relation (3.3) implies that

� n 2 N: dL N pnþqnð Þ�ðpþqÞ, "0
� �

� t
� �� �

� � n 2 N: pn =2Vpð�Þ
� �

[ n 2 N: qn =2Vqð�Þ
� �� �

: ð3:4Þ

Since pn �!
s�stat

p and qn�!
s�stat

q, each set on the right hand side of (3.4) has natural density

zero, hence their union has also natural density zero. Thus, we get

� n 2 N : dL N pnþqnð Þ�ðpþqÞ, "0
� �

� t
� �� �

¼ 0

for each t40. This shows that pn þ qnð Þ �!
s�stat

pþ qð Þ, which completes the proof. g

COROLLARY 3.1 The mapping � from S�S into �þ given by �(p, q)¼Npþq for any p, q in

S is statistically continuous.

Proof Let us write �¼ � �þ, where þ is the vector addition operation. Hence the result

easily follows from Theorems 3.1 and 3.2. g

We now investigate the statistical continuity properties of scalar multiplication, i.e. the

statistical continuity properties of the mapping from R�S into S given by

Mð�; pÞ ¼ �p for any �2R and any p2S. First of all, we will need the following

lemma.

LEMMA 3.1 ([2]) For any � in R, any r in S, and any h40, there is a �40 such that,

dL(N�r, "0)5h whenever dL(Nr, "0)5�.

THEOREM 3.3 The mappingM is statistically continuous in its second place, i.e. for a fixed

� inR, scalar multiplication is a statistically continuous mapping from S into S.
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Proof Let �2R be fixed and (pn) be a sequence in S such that, pn �!
s�stat

p. Then by
Lemma 3.1 we get

n 2 N: dL Npn�p, "0
� �

< �
� �

� n 2 N: dL N� pn�pð Þ, "0
� �

< h
� �

for any h40. Since pn �!
s�stat

p, we have dL(Npn�p
, "0)5� for a.a.n. Thus, we have for each

h40, dL(N�(pn�p), "0)5h for a.a.n. This shows that �pn �!
s�stat

�p; and hence the result. g

However, as the following example shows, the mapping M need not be statistically
continuous in its first place for p 6¼ �.

Example 3.1 (see [2]) Let S be the real line R, viewed as a one-dimensional linear space,
let �¼ �W and �*¼ �M, where �W and �M are the continuous triangle functions defined by

�WðF,GÞð ÞðxÞ ¼ sup max FðuÞ þ GðvÞ � 1, 0
� �

: uþ v ¼ x
� �

,

�MðF,GÞð ÞðxÞ ¼ sup min FðuÞ,GðvÞ
� �

: uþ v ¼ x
� �

:

For p2R, define � by setting �(0)¼ "0, and

�ðpÞ ¼
1

p
�� ��þ 2

"0 þ
p
�� ��þ 1

p
�� ��þ 2

"1 for p 6¼ 0:

It is easy to see that (R, �, �W, �M) is a PN space. Now consider the real sequence (�n)
defined by

�n ¼
1 if n ¼ k2

1

n
if n 6¼ k2

8<
:

where k2N. Observe that stat� lim �n¼ 0 but stat� lim dL(N�np, "0) 6¼ 0, which shows that
the mapping from R into S defined by ���p is not statistically continuous. This proves
our assertion. g

However, we see via the following lemma that the mapping M is statistically
continuous in its first place whenever the triangle function �* is Archimedean, namely,
�* admits no idempotents other than "0 and "1.

LEMMA 3.2 ([2]) If �* is Archimedean, then for any p in S such that Np 6¼ "1 and any h40,
there is a 	40 such that dL(N�p, "0)5h whenever j�j5	.

THEOREM 3.4 If (S, �, �, �*) is a PN space such that �* is Archimedean, and if Np 6¼ "1 for
all p2S, then for any fixed p2S, the mappingM is statistically continuous in its first place.

Proof Let p2S be fixed and (�n) be a real sequence such that stat� lim �n¼ �. Let h40
be given. Then by Lemma 3.2, we can find a 	40 such that dL(N(
��)p, "0)5h whenever
j
 ��j5	. Thus, in particular, for any h40 there is a 	40 such that j�n��j5	 implies
that dL(N(�n��)p

, "0)5h. Hence we get

n 2 N: dL Nð�n��Þp, "0
� �

� h
� �

� n 2 N: �n � �j j � 	
� �

for any h40. Since stat� lim �n¼�, we get

� n 2 N: dL Nð�n��Þp, "0
� �

� h
� �� �

¼ 0

for each h40, i.e. �np �!
s�stat

�p, as desired. g
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The following lemmas will be used in the proof of Theorem 3.5.

LEMMA 3.3 ([2]) If 0��5	, then N	p�N�p for any p in S.

LEMMA 3.4 ([13]) Let � be a continuous triangle function and S the set of all triples
(F,G,H) in (�þ)3 such that

F � � H,Gð Þ and G � � H,Fð Þ:

Then for every h40 there is a �40 such that if (F,G,H) is in S and dL (H, "0)5�, then
dL(F,G)5h.

THEOREM 3.5 Suppose the hypotheses of Theorem 3.4 are satisfied. Then scalar
multiplication is a jointly statistically continuous mapping from R�S, endowed with the
natural product topology, onto S. Furthermore, the mappingM0 from R�S into �þ given by
M
0
ð�, pÞ ¼ �ð�pÞ for any �2R and any p2S, is also jointly statistically continuous.

Proof Let (pn) be a sequence in S such that pn �!
s�stat

p and (�n) be a real sequence such that
stat� lim �n¼ �. First, let us consider the set

M1 ¼ n 2 N: �n � �j j < 1f g

where �(M1)¼ 1, by assumption. Note that we have j�nj5j�j þ 1 if n2M1. Now by (N2)
and (N3) we can write

N�npn��p � � N�n pn�pð Þ,N �n��ð Þp

� �
¼ � N �nj j pn�pð Þ,N �n��ð Þp

� �
:

It follows by Lemma 3.3 that

N�npn��p � � N �j jþ1ð Þ pn�pð Þ,N �n��ð Þp

� �
if n2M1, i.e.

dL N�npn��p, "0
� �

� dL � N �j jþ1ð Þ pn�pð Þ,N �n��ð Þp

� �
, "0

� �
ð3:5Þ

whenever n2M1. Now let t40. Since � is uniformly continuous, we can find a �40
such that

dL � N �j jþ1ð Þ pn�pð Þ,N �n��ð Þp

� �
, "0

� �
< t ð3:6Þ

whenever

dL N �j jþ1ð Þ pn�pð Þ, "0
� �

< � and dL N �n��ð Þp, "0
� �

< �:

Now for such a �40, set

M2 ¼ n 2 N: dL N �j jþ1ð Þ pn�pð Þ, "0
� �

< �
� �

and

M3 ¼ n 2 N: dL N �n��ð Þp, "0
� �

< �
� �

:

By assumption, we have �(M2)¼ �(M3)¼ 1 and thus �(M1\M2\M3)¼ 1. Now for each
n2M1\M2\M3 we have dL(N�npn��p, "0)5t from (3.5) and (3.6). Hence

� n 2 N: dL N�npn��p, "0
� �

� t
� �� �

¼ 0,

which shows that �npn �!
s�stat

�p since t40 is arbitrary. Hence the first conclusion follows.
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Now let us show that the mappingM0 is jointly statistically continuous. Assume that
pn �!

s�stat
p and stat� lim �n¼ �. Then we have �npn �!

s�stat
�p, i.e. stat� lim dL(N�npn�� p, "0)¼ 0.

Now by (N3), we can write

N�npn � � N�npn��p,N�p

� �
and

N�p � � N�p��npn ,N�npn

� �
for every n2N. Thus, by Lemma 3.4, we can say that for any h40 there is a �40 such that
dL(N�npn,N�p)5h whenever dL(N�npn��p, "0)5�. Now using arguments similar to those of
the preceding proofs, we get stat� lim dL(N�npn,N�p)¼ 0, which shows that M0 is jointly
statistically continuous. g
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